SM 32x350 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130301
GTIN: 5906301812944
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
350 mm
Weight
1870 g
1045.50 ZŁ with VAT / pcs + price for transport
850.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure about your choice?
Give us a call
+48 22 499 98 98
if you prefer send us a note by means of
inquiry form
the contact page.
Lifting power and appearance of magnets can be checked on our
force calculator.
Same-day shipping for orders placed before 14:00.
SM 32x350 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their tremendous strength, neodymium magnets offer the following advantages:
- They retain their attractive force for nearly ten years – the drop is just ~1% (based on simulations),
- They are extremely resistant to demagnetization caused by external magnetic fields,
- The use of a polished silver surface provides a refined finish,
- They exhibit superior levels of magnetic induction near the outer area of the magnet,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- The ability for accurate shaping and adjustment to individual needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
- Significant impact in new technology industries – they find application in hard drives, rotating machines, diagnostic apparatus as well as high-tech tools,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of magnetic elements:
- They may fracture when subjected to a powerful impact. If the magnets are exposed to physical collisions, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture while also increases its overall strength,
- They lose strength at extreme temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a moist environment, especially when used outside, we recommend using waterproof magnets, such as those made of plastic,
- The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is risky,
- Possible threat from tiny pieces may arise, when consumed by mistake, which is significant in the health of young users. It should also be noted that tiny components from these products can hinder health screening once in the system,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Optimal lifting capacity of a neodymium magnet – what contributes to it?
The given lifting capacity of the magnet means the maximum lifting force, measured in a perfect environment, that is:
- with mild steel, used as a magnetic flux conductor
- of a thickness of at least 10 mm
- with a refined outer layer
- in conditions of no clearance
- in a perpendicular direction of force
- in normal thermal conditions
Lifting capacity in real conditions – factors
In practice, the holding capacity of a magnet is affected by these factors, arranged from the most important to the least relevant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was determined using a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, however under parallel forces the lifting capacity is smaller. In addition, even a small distance {between} the magnet and the plate decreases the load capacity.
Be Cautious with Neodymium Magnets
Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can surprise you.
To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Neodymium magnetic are noted for being fragile, which can cause them to shatter.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Neodymium magnets can demagnetize at high temperatures.
Despite the general resilience of magnets, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
If joining of neodymium magnets is not under control, then they may crumble and crack. You can't move them to each other. At a distance less than 10 cm you should hold them very firmly.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.
Neodymium magnets produce strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Maintain neodymium magnets away from children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Neodymium magnets generate strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Warning!
In order for you to know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous very strong neodymium magnets.