Neodymiums – complete shape selection

Need reliable magnetic field? We have in stock wide selection of various shapes and sizes. Best choice for domestic applications, workshop and industrial tasks. Browse assortment with fast shipping.

see full offer

Equipment for treasure hunters

Discover your passion related to seabed exploration! Our specialized grips (F200, F400) provide grip certainty and immense power. Stainless steel construction and reinforced ropes will perform in rivers and lakes.

find your water magnet

Magnetic solutions for business

Professional solutions for fixing non-invasive. Threaded mounts (M8, M10, M12) provide quick improvement of work on production halls. They are indispensable mounting lighting, sensors and ads.

check technical specs

🚚 Order by 14:00 – we'll ship today!

Dhit sp. z o.o.
Product available Ships in 2 days

MP 16x12x2 / N38 - ring magnet

ring magnet

Catalog no 030183

GTIN/EAN: 5906301812005

5.00

Diameter

16 mm [±0,1 mm]

internal diameter Ø

12 mm [±0,1 mm]

Height

2 mm [±0,1 mm]

Weight

1.32 g

Magnetization Direction

↑ axial

Load capacity

0.68 kg / 6.62 N

Magnetic Induction

150.33 mT / 1503 Gs

Coating

[NiCuNi] Nickel

1.304 with VAT / pcs + price for transport

1.060 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1.060 ZŁ
1.304 ZŁ
price from 600 pcs
0.996 ZŁ
1.226 ZŁ
price from 2400 pcs
0.933 ZŁ
1.147 ZŁ
Need help making a decision?

Pick up the phone and ask +48 22 499 98 98 if you prefer send us a note by means of request form through our site.
Lifting power along with structure of a neodymium magnet can be reviewed on our our magnetic calculator.

Same-day shipping for orders placed before 14:00.

Technical details - MP 16x12x2 / N38 - ring magnet

Specification / characteristics - MP 16x12x2 / N38 - ring magnet

properties
properties values
Cat. no. 030183
GTIN/EAN 5906301812005
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
Diameter 16 mm [±0,1 mm]
internal diameter Ø 12 mm [±0,1 mm]
Height 2 mm [±0,1 mm]
Weight 1.32 g
Magnetization Direction ↑ axial
Load capacity ~ ? 0.68 kg / 6.62 N
Magnetic Induction ~ ? 150.33 mT / 1503 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MP 16x12x2 / N38 - ring magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Engineering simulation of the magnet - technical parameters

Presented data are the result of a engineering calculation. Results rely on models for the class Nd2Fe14B. Real-world conditions might slightly differ from theoretical values. Please consider these calculations as a supplementary guide for designers.

Table 1: Static force (pull vs distance) - power drop
MP 16x12x2 / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 6011 Gs
601.1 mT
0.68 kg / 1.50 lbs
680.0 g / 6.7 N
safe
1 mm 5259 Gs
525.9 mT
0.52 kg / 1.15 lbs
520.7 g / 5.1 N
safe
2 mm 4534 Gs
453.4 mT
0.39 kg / 0.85 lbs
387.0 g / 3.8 N
safe
3 mm 3870 Gs
387.0 mT
0.28 kg / 0.62 lbs
281.9 g / 2.8 N
safe
5 mm 2776 Gs
277.6 mT
0.15 kg / 0.32 lbs
145.1 g / 1.4 N
safe
10 mm 1251 Gs
125.1 mT
0.03 kg / 0.06 lbs
29.4 g / 0.3 N
safe
15 mm 643 Gs
64.3 mT
0.01 kg / 0.02 lbs
7.8 g / 0.1 N
safe
20 mm 372 Gs
37.2 mT
0.00 kg / 0.01 lbs
2.6 g / 0.0 N
safe
30 mm 159 Gs
15.9 mT
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
safe
50 mm 49 Gs
4.9 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
safe

Table 2: Slippage hold (vertical surface)
MP 16x12x2 / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 0.14 kg / 0.30 lbs
136.0 g / 1.3 N
1 mm Stal (~0.2) 0.10 kg / 0.23 lbs
104.0 g / 1.0 N
2 mm Stal (~0.2) 0.08 kg / 0.17 lbs
78.0 g / 0.8 N
3 mm Stal (~0.2) 0.06 kg / 0.12 lbs
56.0 g / 0.5 N
5 mm Stal (~0.2) 0.03 kg / 0.07 lbs
30.0 g / 0.3 N
10 mm Stal (~0.2) 0.01 kg / 0.01 lbs
6.0 g / 0.1 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
2.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Table 3: Wall mounting (sliding) - vertical pull
MP 16x12x2 / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
0.20 kg / 0.45 lbs
204.0 g / 2.0 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
0.14 kg / 0.30 lbs
136.0 g / 1.3 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
0.07 kg / 0.15 lbs
68.0 g / 0.7 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
0.34 kg / 0.75 lbs
340.0 g / 3.3 N

Table 4: Material efficiency (substrate influence) - sheet metal selection
MP 16x12x2 / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
10%
0.07 kg / 0.15 lbs
68.0 g / 0.7 N
1 mm
25%
0.17 kg / 0.37 lbs
170.0 g / 1.7 N
2 mm
50%
0.34 kg / 0.75 lbs
340.0 g / 3.3 N
3 mm
75%
0.51 kg / 1.12 lbs
510.0 g / 5.0 N
5 mm
100%
0.68 kg / 1.50 lbs
680.0 g / 6.7 N
10 mm
100%
0.68 kg / 1.50 lbs
680.0 g / 6.7 N
11 mm
100%
0.68 kg / 1.50 lbs
680.0 g / 6.7 N
12 mm
100%
0.68 kg / 1.50 lbs
680.0 g / 6.7 N

Table 5: Thermal stability (stability) - thermal limit
MP 16x12x2 / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 0.68 kg / 1.50 lbs
680.0 g / 6.7 N
OK
40 °C -2.2% 0.67 kg / 1.47 lbs
665.0 g / 6.5 N
OK
60 °C -4.4% 0.65 kg / 1.43 lbs
650.1 g / 6.4 N
OK
80 °C -6.6% 0.64 kg / 1.40 lbs
635.1 g / 6.2 N
100 °C -28.8% 0.48 kg / 1.07 lbs
484.2 g / 4.7 N

Table 6: Two magnets (attraction) - forces in the system
MP 16x12x2 / N38

Gap (mm) Attraction (kg/lbs) (N-S) Sliding Force (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 37.47 kg / 82.60 lbs
6 145 Gs
5.62 kg / 12.39 lbs
5620 g / 55.1 N
N/A
1 mm 32.95 kg / 72.65 lbs
11 273 Gs
4.94 kg / 10.90 lbs
4943 g / 48.5 N
29.66 kg / 65.38 lbs
~0 Gs
2 mm 28.69 kg / 63.25 lbs
10 519 Gs
4.30 kg / 9.49 lbs
4303 g / 42.2 N
25.82 kg / 56.92 lbs
~0 Gs
3 mm 24.81 kg / 54.69 lbs
9 781 Gs
3.72 kg / 8.20 lbs
3721 g / 36.5 N
22.33 kg / 49.22 lbs
~0 Gs
5 mm 18.24 kg / 40.20 lbs
8 386 Gs
2.74 kg / 6.03 lbs
2735 g / 26.8 N
16.41 kg / 36.18 lbs
~0 Gs
10 mm 7.99 kg / 17.62 lbs
5 552 Gs
1.20 kg / 2.64 lbs
1199 g / 11.8 N
7.19 kg / 15.86 lbs
~0 Gs
20 mm 1.62 kg / 3.58 lbs
2 501 Gs
0.24 kg / 0.54 lbs
243 g / 2.4 N
1.46 kg / 3.22 lbs
~0 Gs
50 mm 0.06 kg / 0.13 lbs
471 Gs
0.01 kg / 0.02 lbs
9 g / 0.1 N
0.05 kg / 0.11 lbs
~0 Gs
60 mm 0.03 kg / 0.06 lbs
318 Gs
0.00 kg / 0.01 lbs
4 g / 0.0 N
0.02 kg / 0.05 lbs
~0 Gs
70 mm 0.01 kg / 0.03 lbs
225 Gs
0.00 kg / 0.00 lbs
2 g / 0.0 N
0.01 kg / 0.03 lbs
~0 Gs
80 mm 0.01 kg / 0.02 lbs
166 Gs
0.00 kg / 0.00 lbs
1 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.01 lbs
126 Gs
0.00 kg / 0.00 lbs
1 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.01 lbs
98 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Table 7: Safety (HSE) (implants) - warnings
MP 16x12x2 / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 12.5 cm
Hearing aid 10 Gs (1.0 mT) 9.5 cm
Timepiece 20 Gs (2.0 mT) 7.5 cm
Mobile device 40 Gs (4.0 mT) 5.5 cm
Car key 50 Gs (5.0 mT) 5.0 cm
Payment card 400 Gs (40.0 mT) 2.0 cm
HDD hard drive 600 Gs (60.0 mT) 2.0 cm

Table 8: Dynamics (cracking risk) - collision effects
MP 16x12x2 / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 23.50 km/h
(6.53 m/s)
0.03 J
30 mm 39.66 km/h
(11.02 m/s)
0.08 J
50 mm 51.19 km/h
(14.22 m/s)
0.13 J
100 mm 72.39 km/h
(20.11 m/s)
0.27 J

Table 9: Surface protection spec
MP 16x12x2 / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Construction data (Pc)
MP 16x12x2 / N38

Parameter Value SI Unit / Description
Magnetic Flux 11 219 Mx 112.2 µWb
Pc Coefficient 1.22 High (Stable)

Table 11: Underwater work (magnet fishing)
MP 16x12x2 / N38

Environment Effective steel pull Effect
Air (land) 0.68 kg Standard
Water (riverbed) 0.78 kg
(+0.10 kg buoyancy gain)
+14.5%
Warning: Remember to wipe the magnet thoroughly after removing it from water and apply a protective layer (e.g., oil) to avoid corrosion.
1. Sliding resistance

*Note: On a vertical wall, the magnet holds just ~20% of its nominal pull.

2. Efficiency vs thickness

*Thin steel (e.g. computer case) significantly limits the holding force.

3. Temperature resistance

*For N38 grade, the critical limit is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 1.22

This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Technical and environmental data
Material specification
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Environmental data
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 030183-2026
Magnet Unit Converter
Force (pull)

Field Strength

Other deals

It is ideally suited for places where solid attachment of the magnet to the substrate is required without the risk of detachment. Mounting is clean and reversible, unlike gluing. This product with a force of 0.68 kg works great as a door latch, speaker holder, or mounting element in devices.
This is a crucial issue when working with model MP 16x12x2 / N38. Neodymium magnets are sintered ceramics, which means they are hard but breakable and inelastic. When tightening the screw, you must maintain great sensitivity. We recommend tightening manually with a screwdriver, not an impact driver, because too much pressure will cause the ring to crack. It's a good idea to use a rubber spacer under the screw head, which will cushion the stresses. Remember: cracking during assembly results from material properties, not a product defect.
These magnets are coated with standard Ni-Cu-Ni plating, which protects them in indoor conditions, but is not sufficient for rain. Damage to the protective layer during assembly is the most common cause of rusting. If you must use it outside, paint it with anti-corrosion paint after mounting.
The inner hole diameter determines the maximum size of the mounting element. For magnets with a straight hole, a conical head can act like a wedge and burst the magnet. Always check that the screw head is not larger than the outer diameter of the magnet (16 mm), so it doesn't protrude beyond the outline.
It is a magnetic ring with a diameter of 16 mm and thickness 2 mm. The key parameter here is the holding force amounting to approximately 0.68 kg (force ~6.62 N). The mounting hole diameter is precisely 12 mm.
The poles are located on the planes with holes, not on the sides of the ring. In the case of connecting two rings, make sure one is turned the right way. We do not offer paired sets with marked poles in this category, but they are easy to match manually.

Strengths and weaknesses of neodymium magnets.

Strengths

In addition to their long-term stability, neodymium magnets provide the following advantages:
  • They retain magnetic properties for around 10 years – the loss is just ~1% (according to analyses),
  • Neodymium magnets are characterized by exceptionally resistant to loss of magnetic properties caused by external magnetic fields,
  • In other words, due to the smooth layer of nickel, the element becomes visually attractive,
  • The surface of neodymium magnets generates a unique magnetic field – this is one of their assets,
  • Due to their durability and thermal resistance, neodymium magnets can operate (depending on the shape) even at high temperatures reaching 230°C or more...
  • Thanks to versatility in forming and the capacity to modify to unusual requirements,
  • Wide application in electronics industry – they are utilized in hard drives, electric motors, medical equipment, also complex engineering applications.
  • Relatively small size with high pulling force – neodymium magnets offer strong magnetic field in compact dimensions, which enables their usage in small systems

Cons

Characteristics of disadvantages of neodymium magnets: application proposals
  • To avoid cracks upon strong impacts, we recommend using special steel housings. Such a solution secures the magnet and simultaneously improves its durability.
  • Neodymium magnets decrease their force under the influence of heating. As soon as 80°C is exceeded, many of them start losing their power. Therefore, we recommend our special magnets marked [AH], which maintain durability even at temperatures up to 230°C
  • When exposed to humidity, magnets start to rust. For applications outside, it is recommended to use protective magnets, such as magnets in rubber or plastics, which secure oxidation as well as corrosion.
  • We suggest a housing - magnetic mechanism, due to difficulties in producing nuts inside the magnet and complex shapes.
  • Potential hazard related to microscopic parts of magnets can be dangerous, in case of ingestion, which is particularly important in the aspect of protecting the youngest. Furthermore, tiny parts of these devices can disrupt the diagnostic process medical after entering the body.
  • Due to expensive raw materials, their price is relatively high,

Pull force analysis

Maximum lifting force for a neodymium magnet – what contributes to it?

Information about lifting capacity is the result of a measurement for optimal configuration, assuming:
  • on a base made of mild steel, optimally conducting the magnetic field
  • with a thickness of at least 10 mm
  • with a plane cleaned and smooth
  • with direct contact (without impurities)
  • under axial force direction (90-degree angle)
  • at conditions approx. 20°C

What influences lifting capacity in practice

Please note that the working load will differ influenced by the following factors, starting with the most relevant:
  • Distance (between the magnet and the metal), as even a microscopic distance (e.g. 0.5 mm) can cause a decrease in lifting capacity by up to 50% (this also applies to paint, corrosion or dirt).
  • Force direction – note that the magnet holds strongest perpendicularly. Under shear forces, the holding force drops drastically, often to levels of 20-30% of the maximum value.
  • Element thickness – for full efficiency, the steel must be adequately massive. Thin sheet limits the attraction force (the magnet "punches through" it).
  • Plate material – low-carbon steel gives the best results. Higher carbon content reduce magnetic properties and lifting capacity.
  • Surface structure – the more even the surface, the larger the contact zone and higher the lifting capacity. Unevenness acts like micro-gaps.
  • Temperature influence – hot environment reduces magnetic field. Too high temperature can permanently damage the magnet.

Lifting capacity was measured with the use of a steel plate with a smooth surface of optimal thickness (min. 20 mm), under vertically applied force, however under attempts to slide the magnet the holding force is lower. Moreover, even a slight gap between the magnet and the plate reduces the lifting capacity.

Warnings
Dust explosion hazard

Combustion risk: Rare earth powder is highly flammable. Avoid machining magnets without safety gear as this risks ignition.

Safe distance

Very strong magnetic fields can erase data on payment cards, hard drives, and other magnetic media. Maintain a gap of min. 10 cm.

Handling guide

Before starting, read the rules. Sudden snapping can break the magnet or injure your hand. Think ahead.

Precision electronics

Be aware: rare earth magnets produce a field that interferes with sensitive sensors. Keep a safe distance from your mobile, device, and GPS.

Pinching danger

Protect your hands. Two large magnets will join immediately with a force of massive weight, crushing anything in their path. Exercise extreme caution!

Shattering risk

Neodymium magnets are ceramic materials, meaning they are fragile like glass. Collision of two magnets leads to them shattering into shards.

Do not overheat magnets

Standard neodymium magnets (N-type) undergo demagnetization when the temperature surpasses 80°C. This process is irreversible.

Pacemakers

People with a heart stimulator have to keep an large gap from magnets. The magnetism can stop the functioning of the life-saving device.

Do not give to children

Only for adults. Small elements pose a choking risk, causing intestinal necrosis. Keep out of reach of children and animals.

Nickel allergy

A percentage of the population experience a hypersensitivity to Ni, which is the common plating for neodymium magnets. Prolonged contact might lead to skin redness. We strongly advise wear safety gloves.

Danger! More info about hazards in the article: Safety of working with magnets.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98