tel: +48 22 499 98 98

neodymium magnets

We provide red color magnetic Nd2Fe14B - our proposal. All "magnets" on our website are in stock for immediate purchase (see the list). Check out the magnet price list for more details check the magnet price list

Magnet for treasure hunters F300 GOLD

Where to purchase very strong magnet? Holders with magnets in airtight and durable steel enclosure are excellent for use in difficult, demanding weather conditions, including during rain and snow check...

magnets with holders

Holders with magnets can be applied to improve production processes, underwater discoveries, or searching for space rocks made of ore more...

We promise to ship ordered magnets on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o.
Product available Ships today (order by 14:00)

MP 10x6x4 / N38 - ring magnet

ring magnet

Catalog no 030179

GTIN: 5906301811961

5

Diameter [±0,1 mm]

10 mm

internal diameter Ø [±0,1 mm]

6 mm

Height [±0,1 mm]

4 mm

Weight

3.77 g

Magnetization Direction

↑ axial

Load capacity

1.37 kg / 13.44 N

Magnetic Induction

108.09 mT

Coating

[NiCuNi] nickel

0.898 with VAT / pcs + price for transport

0.730 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.730 ZŁ
0.898 ZŁ
price from 900 pcs
0.686 ZŁ
0.844 ZŁ
price from 3500 pcs
0.642 ZŁ
0.790 ZŁ

Need advice?

Call us now +48 888 99 98 98 alternatively contact us by means of form our website.
Strength as well as appearance of a neodymium magnet can be tested using our online calculation tool.

Same-day shipping for orders placed before 14:00.

MP 10x6x4 / N38 - ring magnet

Specification/characteristics MP 10x6x4 / N38 - ring magnet
properties
values
Cat. no.
030179
GTIN
5906301811961
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter
10 mm [±0,1 mm]
internal diameter Ø
6 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
3.77 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
1.37 kg / 13.44 N
Magnetic Induction ~ ?
108.09 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

This model with a hole is created for permanent mounting. The presence of a hole (often for a countersunk screw) enables quick installation of the magnet to wood, walls, or plastic. Product MP 10x6x4 / N38 with a force of 1.37 kg is ideal as a door catch, hanger, or box closure. The ring form permits sliding it onto a rod or shaft.
This is a crucial issue. NdFeB sinters are hard but fragile like ceramic. When tightening the screw, you must be careful. Use a hand screwdriver, not impact drivers, because too much force will cause the magnet to crack. We suggest to use a rubber washer to distribute the pressure. Remember: cracking during installation results from the material properties, but an installation error.
Standard ring magnets have axial magnetization. To make two magnets attract, you need a set where one magnet has the **N** pole on the countersunk side and the other has the **S** pole. With identical magnets, they might not fit on the mounting sides. In the store, we try to mark complementary sets, or you can use one magnet and a steel washer as the second element.
Ring magnets come in two versions: with a straight hole and with a countersunk hole (chamfered). The countersunk hole allows the screw head to be hidden with the surface, which is key in furniture making. A ring without chamfer is used in spacers or experiments. The model you are viewing is the version MP 10x6x4 / N38 - check the hole type in the title or photo.
These magnets are coated with a standard anti-corrosion Ni-Cu-Ni coating. It protects the magnet in indoor conditions, but is not enough for rain. At the screw hole, the coating is thinner and is easily scratched by the screw, becoming a focal point for corrosion. We recommend use for inside buildings.
The strength listed (1.37 kg) refers to ideal contact with a thick steel plate. In practice depends on contact area and distance (e.g. paint layer). The magnet with a hole has slightly less active surface than a solid cylinder, but is very strong. When mounted on a wall (shear force), the magnet will hold approx. 20-30% of its nominal pull force.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their long-term stability, neodymium magnets provide the following advantages:

  • Their power is maintained, and after around ten years, it drops only by ~1% (theoretically),
  • Their ability to resist magnetic interference from external fields is among the best,
  • The use of a mirror-like nickel surface provides a eye-catching finish,
  • They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
  • Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
  • Thanks to the freedom in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in diverse shapes and sizes, which increases their usage potential,
  • Significant impact in modern technologies – they find application in computer drives, rotating machines, clinical machines along with technologically developed systems,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of magnetic elements:

  • They can break when subjected to a heavy impact. If the magnets are exposed to shocks, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage while also strengthens its overall robustness,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to moisture can degrade. Therefore, for outdoor applications, it's best to use waterproof types made of rubber,
  • Limited ability to create threads in the magnet – the use of a magnetic holder is recommended,
  • Potential hazard related to magnet particles may arise, if ingested accidentally, which is significant in the context of child safety. Furthermore, tiny components from these devices have the potential to complicate medical imaging if inside the body,
  • In cases of tight budgets, neodymium magnet cost is a challenge,

Maximum holding power of the magnet – what contributes to it?

The given strength of the magnet represents the optimal strength, assessed in ideal conditions, that is:

  • with mild steel, used as a magnetic flux conductor
  • having a thickness of no less than 10 millimeters
  • with a refined outer layer
  • in conditions of no clearance
  • with vertical force applied
  • at room temperature

Lifting capacity in real conditions – factors

The lifting capacity of a magnet is influenced by in practice the following factors, ordered from most important to least significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was measured on the plate surface of 20 mm thickness, when a perpendicular force was applied, whereas under shearing force the load capacity is reduced by as much as fivefold. Moreover, even a slight gap {between} the magnet’s surface and the plate lowers the load capacity.

Notes with Neodymium Magnets

Neodymium magnets are among the most powerful magnets on Earth. The surprising force they generate between each other can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Neodymium Magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a significant injury may occur. Depending on how massive the neodymium magnets are, they can lead to a cut or a fracture.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets can become demagnetized at high temperatures.

Under specific conditions, Neodymium magnets may experience demagnetization when subjected to high temperatures.

Keep neodymium magnets away from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets should not be near people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are especially delicate, which leads to shattering.

Magnets made of neodymium are delicate as well as will break if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Be careful!

To illustrate why neodymium magnets are so dangerous, read the article - How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98