MP 10x6x4 / N38 - ring magnet
ring magnet
Catalog no 030179
GTIN: 5906301811961
Diameter [±0,1 mm]
10 mm
internal diameter Ø [±0,1 mm]
6 mm
Height [±0,1 mm]
4 mm
Weight
3.77 g
Magnetization Direction
↑ axial
Load capacity
1.37 kg / 13.44 N
Magnetic Induction
108.09 mT
Coating
[NiCuNi] nickel
0.90 ZŁ with VAT / pcs + price for transport
0.73 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to talk magnets?
Give us a call
+48 888 99 98 98
or contact us using
form
the contact page.
Strength as well as shape of a magnet can be reviewed with our
magnetic calculator.
Orders submitted before 14:00 will be dispatched today!
MP 10x6x4 / N38 - ring magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their pulling strength, neodymium magnets provide the following advantages:
- They virtually do not lose power, because even after ten years, the performance loss is only ~1% (in laboratory conditions),
- Their ability to resist magnetic interference from external fields is impressive,
- By applying a reflective layer of silver, the element gains a clean look,
- Magnetic induction on the surface of these magnets is very strong,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- The ability for accurate shaping as well as customization to specific needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which extends the scope of their use cases,
- Key role in cutting-edge sectors – they find application in hard drives, electric drives, diagnostic apparatus as well as high-tech tools,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of NdFeB magnets:
- They can break when subjected to a sudden impact. If the magnets are exposed to physical collisions, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time strengthens its overall strength,
- Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- They rust in a moist environment. If exposed to rain, we recommend using sealed magnets, such as those made of non-metallic materials,
- Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing complex structures directly in the magnet,
- Safety concern linked to microscopic shards may arise, especially if swallowed, which is crucial in the family environments. Moreover, minuscule fragments from these assemblies can hinder health screening if inside the body,
- High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which can restrict large-scale applications
Handle Neodymium Magnets Carefully
Do not give neodymium magnets to children.
Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnetic are noted for their fragility, which can cause them to become damaged.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
Keep neodymium magnets away from TV, wallet, and computer HDD.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
Neodymium magnets will bounce and touch together within a distance of several to around 10 cm from each other.
Neodymium magnets are the most powerful magnets ever created, and their power can shock you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.
Keep neodymium magnets away from people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Neodymium magnets can demagnetize at high temperatures.
Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Avoid bringing neodymium magnets close to a phone or GPS.
Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Warning!
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.