tel: +48 888 99 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our store's offer. All magnesy neodymowe in our store are available for immediate purchase (see the list). Check out the magnet price list for more details see the magnet price list

Magnet for treasure hunters F200 GOLD

Where to purchase strong neodymium magnet? Magnetic holders in airtight and durable steel enclosure are excellent for use in variable and difficult weather, including during snow and rain read...

magnets with holders

Holders with magnets can be applied to improve production, exploring underwater areas, or locating meteors from gold more information...

We promise to ship your order if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o.
Product available Ships in 2 days

SM 25x325 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130370

GTIN: 5906301813187

0

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

325 mm

Weight

0.01 g

984.00 with VAT / pcs + price for transport

800.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
800.00 ZŁ
984.00 ZŁ
price from 5 pcs
760.00 ZŁ
934.80 ZŁ
price from 10 pcs
720.00 ZŁ
885.60 ZŁ

Not sure where to buy?

Pick up the phone and ask +48 22 499 98 98 alternatively drop us a message using form through our site.
Lifting power along with appearance of neodymium magnets can be estimated with our power calculator.

Same-day shipping for orders placed before 14:00.

SM 25x325 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 25x325 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130370
GTIN
5906301813187
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
325 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

It is the heart of every magnetic filter used in industry. Its task is to separate metal filings from the transported material. High magnetic induction allows catching the finest iron particles.
The construction is based on a sealed stainless steel housing. The center is filled with NdFeB magnets arranged to maximize the field on the surface. Thanks to this, the rod is durable and hygienic.
Due to high power, direct removal of filings can be troublesome. We recommend taping the filings and peeling them off together. In industry, cover tubes (Easy Clean) are used, from which the magnet is slid out.
The Gauss value tells us how effectively the magnet will catch small impurities. Standard rods (~8000 Gs) are sufficient for bolts, nails, and chips. High induction is required when contaminants are microscopic.
We fulfill custom orders for bars matched to your machine. You can choose a mounting method compatible with your project. We ensure fast execution of special orders.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their magnetic capacity, neodymium magnets provide the following advantages:

  • They have constant strength, and over nearly ten years their attraction force decreases symbolically – ~1% (in testing),
  • Their ability to resist magnetic interference from external fields is impressive,
  • Because of the lustrous layer of nickel, the component looks aesthetically refined,
  • They exhibit elevated levels of magnetic induction near the outer area of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
  • The ability for precise shaping as well as customization to individual needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which amplifies their functionality across industries,
  • Wide application in advanced technical fields – they are used in hard drives, electric motors, medical equipment as well as sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in small dimensions, which makes them ideal in compact constructions

Disadvantages of NdFeB magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to physical collisions, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time enhances its overall robustness,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of rubber for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing fine shapes directly in the magnet,
  • Health risk from tiny pieces may arise, if ingested accidentally, which is crucial in the context of child safety. Additionally, miniature parts from these assemblies can hinder health screening once in the system,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Best holding force of the magnet in ideal parameterswhat affects it?

The given strength of the magnet means the optimal strength, assessed in the best circumstances, that is:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • with zero air gap
  • in a perpendicular direction of force
  • in normal thermal conditions

Practical aspects of lifting capacity – factors

The lifting capacity of a magnet is determined by in practice key elements, ordered from most important to least significant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on the plate surface of 20 mm thickness, when the force acted perpendicularly, in contrast under shearing force the load capacity is reduced by as much as 75%. Moreover, even a minimal clearance {between} the magnet and the plate decreases the lifting capacity.

Be Cautious with Neodymium Magnets

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

In the case of placing a finger in the path of a neodymium magnet, in that situation, a cut or a fracture may occur.

Neodymium magnets can demagnetize at high temperatures.

Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Neodymium magnets are the most powerful magnets ever invented. Their strength can shock you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent damage to the magnets.

Magnets made of neodymium are incredibly fragile, they easily crack as well as can become damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

  Do not give neodymium magnets to children.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Caution!

In order to show why neodymium magnets are so dangerous, see the article - How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98