SM 25x325 [2xM8] / N52 - magnetic separator
magnetic separator
Catalog no 130370
GTIN: 5906301813187
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
325 mm
Weight
0.01 g
984.00 ZŁ with VAT / pcs + price for transport
800.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to talk magnets?
Pick up the phone and ask
+48 888 99 98 98
alternatively let us know through
inquiry form
through our site.
Specifications as well as form of neodymium magnets can be checked on our
our magnetic calculator.
Same-day shipping for orders placed before 14:00.
SM 25x325 [2xM8] / N52 - magnetic separator
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their exceptional strength, neodymium magnets offer the following advantages:
- Their strength is durable, and after around ten years, it drops only by ~1% (theoretically),
- They protect against demagnetization induced by external electromagnetic environments very well,
- Thanks to the glossy finish and gold coating, they have an elegant appearance,
- Magnetic induction on the surface of these magnets is impressively powerful,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- Thanks to the freedom in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which expands their application range,
- Wide application in cutting-edge sectors – they serve a purpose in data storage devices, electromechanical systems, clinical machines along with technologically developed systems,
- Relatively small size with high magnetic force – neodymium magnets offer strong power in tiny dimensions, which allows for use in small systems
Disadvantages of neodymium magnets:
- They can break when subjected to a powerful impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage and reinforces its overall strength,
- High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a moist environment, especially when used outside, we recommend using waterproof magnets, such as those made of non-metallic materials,
- The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is not feasible,
- Possible threat due to small fragments may arise, when consumed by mistake, which is significant in the family environments. Additionally, minuscule fragments from these devices may complicate medical imaging when ingested,
- Due to the price of neodymium, their cost is considerably higher,
Maximum lifting force for a neodymium magnet – what it depends on?
The given pulling force of the magnet represents the maximum force, assessed in ideal conditions, namely:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- having a thickness of no less than 10 millimeters
- with a smooth surface
- in conditions of no clearance
- under perpendicular detachment force
- at room temperature
Practical lifting capacity: influencing factors
The lifting capacity of a magnet is determined by in practice the following factors, according to their importance:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was conducted on plates with a smooth surface of optimal thickness, under perpendicular forces, in contrast under attempts to slide the magnet the lifting capacity is smaller. Moreover, even a minimal clearance {between} the magnet and the plate lowers the load capacity.
Handle with Care: Neodymium Magnets
Neodymium magnets are the strongest magnets ever created, and their power can shock you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
Neodymium magnets jump and clash mutually within a distance of several to around 10 cm from each other.
Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.
Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Avoid bringing neodymium magnets close to a phone or GPS.
Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are known for being fragile, which can cause them to crumble.
Neodymium magnets are characterized by considerable fragility. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.
Neodymium magnets produce intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
The magnet is coated with nickel - be careful if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Warning!
So you are aware of why neodymium magnets are so dangerous, see the article titled How dangerous are strong neodymium magnets?.
