tel: +48 22 499 98 98

neodymium magnets

We provide red color magnetic Nd2Fe14B - our offer. All "magnets" in our store are available for immediate purchase (see the list). Check out the magnet pricing for more details see the magnet price list

Magnets for treasure hunters F400 GOLD

Where to buy powerful neodymium magnet? Holders with magnets in airtight, solid steel casing are perfect for use in difficult climate conditions, including during rain and snow more...

magnetic holders

Magnetic holders can be used to improve manufacturing, underwater exploration, or searching for meteors from gold see...

Order always shipped on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x325 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130370

GTIN: 5906301813187

0

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

325 mm

Weight

0.01 g

984.00 with VAT / pcs + price for transport

800.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
800.00 ZŁ
984.00 ZŁ
price from 4 pcs
800.00 ZŁ
984.00 ZŁ
price from 6 pcs
800.00 ZŁ
984.00 ZŁ

Can't decide what to choose?

Give us a call +48 888 99 98 98 or send us a note by means of form the contact page.
Lifting power as well as structure of magnets can be verified using our our magnetic calculator.

Orders submitted before 14:00 will be dispatched today!

SM 25x325 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 25x325 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130370
GTIN
5906301813187
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
325 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device roller magnetic is based on the use of neodymium magnets, which are embedded in a casing made of stainless steel mostly AISI304. Due to this, it is possible to efficiently segregate ferromagnetic particles from other materials. An important element of its operation is the use of repulsion of magnetic poles N and S, which enables magnetic substances to be attracted. The thickness of the embedded magnet and its structure's pitch determine the power and range of the separator's operation.
Generally speaking, magnetic separators are used to segregate ferromagnetic elements. If the cans are ferromagnetic, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers are used in food production for the elimination of metallic contaminants, including iron fragments or iron dust. Our rollers are constructed from acid-resistant steel, AISI 304, approved for use in food.
Magnetic rollers, otherwise cylindrical magnets, are employed in metal separation, food production as well as recycling. They help in extracting iron dust during the process of separating metals from other materials.
Our magnetic rollers are composed of neodymium magnets placed in a stainless steel tube cylinder made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded holes - 18 mm, allowing for simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars stand out in terms of magnetic force lines, flux density and the field of the magnetic field. We produce them in materials, N42 and N52.
Often it is believed that the greater the magnet's power, the more efficient it is. But, the value of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and expected needs. The standard operating temperature of a magnetic bar is 80°C.
In the case where the magnet is thin, the magnetic force lines are short. By contrast, when the magnet is thick, the force lines will be longer and extend over a greater distance.
For creating the casings of magnetic separators - rollers, usually stainless steel is utilized, especially types AISI 316, AISI 316L, and AISI 304.
In a saltwater contact, AISI 316 steel is recommended due to its outstanding corrosion resistance.
Magnetic bars stand out for their specific arrangement of poles and their capability to attract magnetic particles directly onto their surface, in contrast to other devices that may utilize more complicated filtration systems.
Technical designations and terms related to magnetic separators include amongst others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as excellent separation efficiency, strong magnetic field, and durability. However, some of the downsides may involve the requirement for frequent cleaning, greater weight, and potential installation difficulties.
To properly maintain of neodymium magnetic rollers, it’s worth they should be regularly cleaned, avoiding temperatures above 80 degrees. The rollers feature waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and weaken. Testing of the rollers should be carried out once every 24 months. Caution should be taken during use, as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where metal separation is crucial.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their stability, neodymium magnets are valued for these benefits:

  • They have constant strength, and over nearly 10 years their performance decreases symbolically – ~1% (in testing),
  • They protect against demagnetization induced by surrounding magnetic influence very well,
  • Thanks to the polished finish and silver coating, they have an visually attractive appearance,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to build),
  • With the option for tailored forming and targeted design, these magnets can be produced in various shapes and sizes, greatly improving engineering flexibility,
  • Wide application in cutting-edge sectors – they are utilized in data storage devices, electric drives, diagnostic apparatus and sophisticated instruments,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of magnetic elements:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to mechanical hits, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage and strengthens its overall durability,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to humidity can degrade. Therefore, for outdoor applications, we advise waterproof types made of non-metallic composites,
  • Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing fine shapes directly in the magnet,
  • Possible threat related to magnet particles may arise, when consumed by mistake, which is notable in the health of young users. It should also be noted that tiny components from these devices might complicate medical imaging after being swallowed,
  • Due to expensive raw materials, their cost is above average,

Precautions

Neodymium magnets are the most powerful magnets ever invented. Their power can shock you.

Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Magnets made of neodymium are highly susceptible to damage, resulting in breaking.

Magnets made of neodymium are highly delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets attract each other within a distance of several to around 10 cm from each other. Remember not to insert fingers between magnets or alternatively in their path when attract. Depending on how huge the neodymium magnets are, they can lead to a cut or a fracture.

 Keep neodymium magnets far from children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Warning!

So that know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous very powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98