UMC 75x11/6x18 / N38 - cylindrical magnetic holder
cylindrical magnetic holder
Catalog no 320414
GTIN: 5906301814702
Diameter [±0,1 mm]
75 mm
internal diameter Ø [±0,1 mm]
11/6 mm
Height [±0,1 mm]
18 mm
Weight
465 g
Load capacity
155 kg / 1520.03 N
Coating
[NiCuNi] nickel
169.86 ZŁ with VAT / pcs + price for transport
138.10 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Hunting for a discount?
Give us a call
+48 22 499 98 98
alternatively send us a note via
request form
the contact section.
Lifting power along with structure of magnetic components can be checked with our
power calculator.
Same-day shipping for orders placed before 14:00.
UMC 75x11/6x18 / N38 - cylindrical magnetic holder
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their superior power, neodymium magnets have these key benefits:
- They virtually do not lose strength, because even after ten years, the decline in efficiency is only ~1% (in laboratory conditions),
- They protect against demagnetization induced by external magnetic fields remarkably well,
- The use of a polished nickel surface provides a eye-catching finish,
- They exhibit elevated levels of magnetic induction near the outer area of the magnet,
- Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
- With the option for fine forming and targeted design, these magnets can be produced in numerous shapes and sizes, greatly improving engineering flexibility,
- Important function in new technology industries – they find application in hard drives, rotating machines, diagnostic apparatus or even high-tech tools,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, with minimal size,
Disadvantages of neodymium magnets:
- They may fracture when subjected to a strong impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and increases its overall robustness,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to humidity can oxidize. Therefore, for outdoor applications, we suggest waterproof types made of coated materials,
- Limited ability to create precision features in the magnet – the use of a magnetic holder is recommended,
- Possible threat linked to microscopic shards may arise, if ingested accidentally, which is notable in the protection of children. Additionally, miniature parts from these devices can disrupt scanning if inside the body,
- Due to a complex production process, their cost is relatively high,
Exercise Caution with Neodymium Magnets
Neodymium magnetic are particularly fragile, resulting in shattering.
Magnets made of neodymium are delicate and will break if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
Neodymium magnets are the strongest magnets ever invented. Their strength can shock you.
To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
Magnets attract each other within a distance of several to around 10 cm from each other. Remember not to place fingers between magnets or alternatively in their path when they attract. Magnets, depending on their size, are able even cut off a finger or alternatively there can be a severe pressure or even a fracture.
Neodymium magnets should not be near people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Do not give neodymium magnets to youngest children.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Pay attention!
In order for you to know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous powerful neodymium magnets.