tel: +48 888 99 98 98

neodymium magnets

We provide blue color magnets Nd2Fe14B - our store's offer. All magnesy on our website are available for immediate delivery (see the list). Check out the magnet pricing for more details see the magnet price list

Magnet for water searching F200 GOLD

Where to purchase strong neodymium magnet? Holders with magnets in airtight, solid steel casing are ideally suited for use in difficult weather, including during snow and rain see...

magnets with holders

Magnetic holders can be applied to enhance production processes, exploring underwater areas, or locating meteorites from gold read...

We promise to ship your order on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMC 60x9/5x15 / N38 - cylindrical magnetic holder

cylindrical magnetic holder

Catalog no 320413

GTIN: 5906301814696

0

Diameter [±0,1 mm]

60 mm

internal diameter Ø [±0,1 mm]

9/5 mm

Height [±0,1 mm]

15 mm

Weight

240 g

Load capacity

95 kg / 931.63 N

Coating

[NiCuNi] nickel

64.94 with VAT / pcs + price for transport

52.80 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
52.80 ZŁ
64.94 ZŁ
price from 10 pcs
49.63 ZŁ
61.05 ZŁ
price from 20 pcs
46.46 ZŁ
57.15 ZŁ

Want to talk magnets?

Call us now +48 888 99 98 98 if you prefer let us know through request form the contact form page.
Weight along with structure of magnets can be calculated using our power calculator.

Order by 14:00 and we’ll ship today!

UMC 60x9/5x15 / N38 - cylindrical magnetic holder

Specification/characteristics UMC 60x9/5x15 / N38 - cylindrical magnetic holder
properties
values
Cat. no.
320413
GTIN
5906301814696
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter
60 mm [±0,1 mm]
internal diameter Ø
9/5 mm [±0,1 mm]
Height
15 mm [±0,1 mm]
Weight
240 g [±0,1 mm]
Load capacity ~ ?
95 kg / 931.63 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their high retention, neodymium magnets are valued for these benefits:

  • They retain their full power for nearly ten years – the drop is just ~1% (in theory),
  • They remain magnetized despite exposure to strong external fields,
  • Thanks to the glossy finish and nickel coating, they have an visually attractive appearance,
  • They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for tailored forming and precise design, these magnets can be produced in numerous shapes and sizes, greatly improving application potential,
  • Key role in new technology industries – they are utilized in data storage devices, rotating machines, diagnostic apparatus and other advanced devices,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, with minimal size,

Disadvantages of magnetic elements:

  • They are prone to breaking when subjected to a strong impact. If the magnets are exposed to external force, we recommend in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks and enhances its overall resistance,
  • They lose power at elevated temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a wet environment – during outdoor use, we recommend using encapsulated magnets, such as those made of rubber,
  • The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is not feasible,
  • Potential hazard related to magnet particles may arise, if ingested accidentally, which is crucial in the context of child safety. Moreover, miniature parts from these magnets can disrupt scanning when ingested,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Maximum holding power of the magnet – what it depends on?

The given lifting capacity of the magnet means the maximum lifting force, calculated in the best circumstances, specifically:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • with vertical force applied
  • at room temperature

Determinants of practical lifting force of a magnet

The lifting capacity of a magnet is determined by in practice key elements, from primary to secondary:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on a smooth plate of optimal thickness, under a perpendicular pulling force, in contrast under attempts to slide the magnet the holding force is lower. Moreover, even a slight gap {between} the magnet and the plate decreases the holding force.

Handle Neodymium Magnets with Caution

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Neodymium magnets bounce and also touch each other mutually within a distance of several to around 10 cm from each other.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets can become demagnetized at high temperatures.

While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their strength can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

 It is important to keep neodymium magnets out of reach from children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Neodymium magnetic are delicate and can easily crack as well as shatter.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.

Warning!

To show why neodymium magnets are so dangerous, see the article - How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98