tel: +48 22 499 98 98

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our store's offer. Practically all "magnets" on our website are available for immediate delivery (check the list). See the magnet pricing for more details see the magnet price list

Magnets for searching F300 GOLD

Where to purchase powerful magnet? Holders with magnets in solid and airtight enclosure are perfect for use in challenging weather conditions, including during rain and snow see...

magnetic holders

Holders with magnets can be applied to facilitate production, underwater exploration, or searching for space rocks from gold read...

We promise to ship ordered magnets on the day of purchase before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMC 25x6/4x8 / N38 - cylindrical magnetic holder

cylindrical magnetic holder

Catalog no 320408

GTIN: 5906301814641

0

Diameter [±0,1 mm]

25 mm

internal diameter Ø [±0,1 mm]

6/4 mm

Height [±0,1 mm]

8 mm

Weight

21 g

Load capacity

14 kg / 137.29 N

Coating

[NiCuNi] nickel

11.70 with VAT / pcs + price for transport

9.51 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
9.51 ZŁ
11.70 ZŁ
price from 50 pcs
8.94 ZŁ
11.00 ZŁ
price from 100 pcs
8.37 ZŁ
10.29 ZŁ

Do you have doubts?

Contact us by phone +48 22 499 98 98 otherwise drop us a message using inquiry form our website.
Force as well as shape of a neodymium magnet can be checked with our our magnetic calculator.

Orders placed before 14:00 will be shipped the same business day.

UMC 25x6/4x8 / N38 - cylindrical magnetic holder

Specification/characteristics UMC 25x6/4x8 / N38 - cylindrical magnetic holder
properties
values
Cat. no.
320408
GTIN
5906301814641
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter
25 mm [±0,1 mm]
internal diameter Ø
6/4 mm [±0,1 mm]
Height
8 mm [±0,1 mm]
Weight
21 g [±0,1 mm]
Load capacity ~ ?
14 kg / 137.29 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their tremendous field intensity, neodymium magnets offer the following advantages:

  • They retain their attractive force for almost ten years – the loss is just ~1% (according to analyses),
  • They protect against demagnetization induced by ambient electromagnetic environments effectively,
  • Because of the lustrous layer of gold, the component looks aesthetically refined,
  • Magnetic induction on the surface of these magnets is impressively powerful,
  • Thanks to their high temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
  • The ability for accurate shaping as well as adaptation to custom needs – neodymium magnets can be manufactured in multiple variants of geometries, which amplifies their functionality across industries,
  • Important function in cutting-edge sectors – they serve a purpose in data storage devices, rotating machines, diagnostic apparatus and other advanced devices,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, in miniature format,

Disadvantages of magnetic elements:

  • They may fracture when subjected to a strong impact. If the magnets are exposed to shocks, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time enhances its overall strength,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of plastic for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing threads directly in the magnet,
  • Potential hazard from tiny pieces may arise, especially if swallowed, which is important in the protection of children. It should also be noted that tiny components from these assemblies might hinder health screening once in the system,
  • Due to expensive raw materials, their cost is relatively high,

Maximum lifting force for a neodymium magnet – what it depends on?

The given holding capacity of the magnet represents the highest holding force, assessed in ideal conditions, namely:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with no separation
  • in a perpendicular direction of force
  • under standard ambient temperature

Key elements affecting lifting force

The lifting capacity of a magnet is determined by in practice key elements, according to their importance:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed using a polished steel plate of optimal thickness (min. 20 mm), under perpendicular detachment force, in contrast under shearing force the load capacity is reduced by as much as 75%. In addition, even a small distance {between} the magnet and the plate reduces the holding force.

Be Cautious with Neodymium Magnets

Neodymium magnets are the strongest magnets ever created, and their strength can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets will bounce and also clash together within a distance of several to almost 10 cm from each other.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

  Neodymium magnets should not be in the vicinity youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets are fragile and can easily crack and get damaged.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.

Pay attention!

To illustrate why neodymium magnets are so dangerous, read the article - How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98