tel: +48 22 499 98 98

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our proposal. Practically all "magnets" in our store are in stock for immediate delivery (see the list). See the magnet price list for more details see the magnet price list

Magnet for fishing F400 GOLD

Where to purchase strong neodymium magnet? Magnetic holders in solid and airtight steel enclosure are perfect for use in difficult climate conditions, including snow and rain more information...

magnets with holders

Holders with magnets can be applied to improve production processes, underwater exploration, or locating meteorites made of metal see more...

We promise to ship ordered magnets on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available Ships in 2 days

SM 25x125 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130367

GTIN: 5906301813156

0

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

125 mm

Weight

0.01 g

393.60 with VAT / pcs + price for transport

320.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
320.00 ZŁ
393.60 ZŁ
price from 10 pcs
304.00 ZŁ
373.92 ZŁ
price from 15 pcs
288.00 ZŁ
354.24 ZŁ

Not sure where to buy?

Contact us by phone +48 22 499 98 98 otherwise let us know using request form the contact page.
Parameters along with structure of a magnet can be checked with our modular calculator.

Order by 14:00 and we’ll ship today!

SM 25x125 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 25x125 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130367
GTIN
5906301813156
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
125 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic rod is the basic building block of grate separators. It is used for cleaning bulk products (flour, sugar, granules) and liquids (oils, juices). High magnetic induction allows catching the finest iron particles.
The rod consists of a casing tube made of acid-resistant steel (AISI 304/316). Inside, there is a stack of strong neodymium magnets in a special configuration. Such construction ensures resistance to corrosion, water, and acids.
Due to high power, direct removal of filings can be troublesome. You can use compressed air or special non-magnetic strippers. In industry, cover tubes (Easy Clean) are used, from which the magnet is slid out.
The Gauss value tells us how effectively the magnet will catch small impurities. For basic iron protection, standard power is enough. High induction is required when contaminants are microscopic.
We can produce a rod with any mounting end. You can choose a mounting method compatible with your project. Contact us for a quote on non-standard dimensions.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their strong holding force, neodymium magnets have these key benefits:

  • They have constant strength, and over more than ten years their performance decreases symbolically – ~1% (according to theory),
  • They protect against demagnetization induced by ambient magnetic fields remarkably well,
  • In other words, due to the shiny silver coating, the magnet obtains an professional appearance,
  • They possess intense magnetic force measurable at the magnet’s surface,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for tailored forming and personalized design, these magnets can be produced in various shapes and sizes, greatly improving design adaptation,
  • Wide application in new technology industries – they find application in HDDs, electric motors, medical equipment along with sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in tiny dimensions, which makes them ideal in compact constructions

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to shocks, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage and enhances its overall robustness,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to humidity can corrode. Therefore, for outdoor applications, it's best to use waterproof types made of rubber,
  • Limited ability to create internal holes in the magnet – the use of a housing is recommended,
  • Possible threat related to magnet particles may arise, when consumed by mistake, which is crucial in the context of child safety. Moreover, miniature parts from these magnets can hinder health screening when ingested,
  • In cases of large-volume purchasing, neodymium magnet cost may not be economically viable,

Best holding force of the magnet in ideal parameterswhat contributes to it?

The given holding capacity of the magnet represents the highest holding force, assessed under optimal conditions, that is:

  • with mild steel, serving as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a polished side
  • in conditions of no clearance
  • with vertical force applied
  • in normal thermal conditions

Practical aspects of lifting capacity – factors

The lifting capacity of a magnet depends on in practice the following factors, from primary to secondary:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on a smooth plate of suitable thickness, under perpendicular forces, in contrast under shearing force the lifting capacity is smaller. In addition, even a slight gap {between} the magnet and the plate decreases the lifting capacity.

Handle with Care: Neodymium Magnets

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

 It is essential to keep neodymium magnets out of reach from youngest children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Neodymium magnets are the strongest magnets ever created, and their power can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

If joining of neodymium magnets is not under control, then they may crumble and also crack. You can't approach them to each other. At a distance less than 10 cm you should have them extremely strongly.

Keep neodymium magnets away from GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are extremely fragile, resulting in shattering.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can become demagnetized at high temperatures.

Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Exercise caution!

So you are aware of why neodymium magnets are so dangerous, see the article titled How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98