SM 25x125 [2xM8] / N52 - magnetic separator
magnetic separator
Catalog no 130367
GTIN: 5906301813156
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
125 mm
Weight
0.01 g
393.60 ZŁ with VAT / pcs + price for transport
320.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to talk magnets?
Call us now
+48 22 499 98 98
or contact us by means of
our online form
through our site.
Lifting power as well as structure of magnetic components can be calculated on our
modular calculator.
Orders submitted before 14:00 will be dispatched today!
SM 25x125 [2xM8] / N52 - magnetic separator
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their notable holding force, neodymium magnets have these key benefits:
- Their strength remains stable, and after around 10 years, it drops only by ~1% (theoretically),
- They remain magnetized despite exposure to magnetic noise,
- The use of a polished gold surface provides a eye-catching finish,
- They possess intense magnetic force measurable at the magnet’s surface,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- The ability for precise shaping or adjustment to individual needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which extends the scope of their use cases,
- Key role in modern technologies – they serve a purpose in computer drives, electric motors, healthcare devices or even sophisticated instruments,
- Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications
Disadvantages of neodymium magnets:
- They can break when subjected to a strong impact. If the magnets are exposed to external force, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks while also enhances its overall durability,
- High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a damp environment – during outdoor use, we recommend using moisture-resistant magnets, such as those made of polymer,
- The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is risky,
- Possible threat linked to microscopic shards may arise, when consumed by mistake, which is crucial in the protection of children. It should also be noted that tiny components from these products can complicate medical imaging once in the system,
- In cases of tight budgets, neodymium magnet cost may be a barrier,
Detachment force of the magnet in optimal conditions – what affects it?
The given pulling force of the magnet means the maximum force, calculated under optimal conditions, specifically:
- with mild steel, used as a magnetic flux conductor
- having a thickness of no less than 10 millimeters
- with a polished side
- with no separation
- in a perpendicular direction of force
- at room temperature
Determinants of lifting force in real conditions
The lifting capacity of a magnet depends on in practice the following factors, according to their importance:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, however under attempts to slide the magnet the lifting capacity is smaller. Moreover, even a minimal clearance {between} the magnet and the plate decreases the lifting capacity.
Handle with Care: Neodymium Magnets
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Avoid bringing neodymium magnets close to a phone or GPS.
Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Do not give neodymium magnets to youngest children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can shock you at first.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.
Neodymium magnets are particularly delicate, which leads to damage.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
If joining of neodymium magnets is not controlled, then they may crumble and crack. You can't move them to each other. At a distance less than 10 cm you should have them very firmly.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Neodymium magnets can become demagnetized at high temperatures.
Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Safety rules!
So you are aware of why neodymium magnets are so dangerous, see the article titled How very dangerous are very strong neodymium magnets?.