SM 25x125 [2xM8] / N52 - magnetic separator
magnetic separator
Catalog no 130367
GTIN: 5906301813156
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
125 mm
Weight
0.01 g
393.60 ZŁ with VAT / pcs + price for transport
320.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure about your choice?
Call us
+48 888 99 98 98
otherwise contact us through
inquiry form
the contact page.
Lifting power and appearance of neodymium magnets can be reviewed using our
power calculator.
Orders placed before 14:00 will be shipped the same business day.
SM 25x125 [2xM8] / N52 - magnetic separator
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their superior magnetic energy, neodymium magnets have these key benefits:
- They have stable power, and over around 10 years their attraction force decreases symbolically – ~1% (in testing),
- Their ability to resist magnetic interference from external fields is impressive,
- Because of the lustrous layer of nickel, the component looks visually appealing,
- They have exceptional magnetic induction on the surface of the magnet,
- With the right combination of compounds, they reach significant thermal stability, enabling operation at or above 230°C (depending on the design),
- With the option for tailored forming and precise design, these magnets can be produced in numerous shapes and sizes, greatly improving engineering flexibility,
- Wide application in modern technologies – they are used in data storage devices, electromechanical systems, clinical machines as well as technologically developed systems,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, in miniature format,
Disadvantages of rare earth magnets:
- They may fracture when subjected to a sudden impact. If the magnets are exposed to mechanical hits, we recommend in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage while also increases its overall durability,
- High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to moisture can rust. Therefore, for outdoor applications, we recommend waterproof types made of coated materials,
- The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is not feasible,
- Possible threat due to small fragments may arise, when consumed by mistake, which is notable in the health of young users. Additionally, minuscule fragments from these assemblies can hinder health screening once in the system,
- In cases of tight budgets, neodymium magnet cost may be a barrier,
Maximum lifting force for a neodymium magnet – what affects it?
The given strength of the magnet corresponds to the optimal strength, calculated under optimal conditions, specifically:
- with the use of low-carbon steel plate acting as a magnetic yoke
- with a thickness of minimum 10 mm
- with a polished side
- in conditions of no clearance
- in a perpendicular direction of force
- under standard ambient temperature
Magnet lifting force in use – key factors
In practice, the holding capacity of a magnet is affected by these factors, from crucial to less important:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was tested on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, in contrast under parallel forces the lifting capacity is smaller. Moreover, even a small distance {between} the magnet’s surface and the plate decreases the load capacity.
Exercise Caution with Neodymium Magnets
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Keep neodymium magnets far from youngest children.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
If joining of neodymium magnets is not controlled, then they may crumble and also crack. Remember not to approach them to each other or have them firmly in hands at a distance less than 10 cm.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets are characterized by being fragile, which can cause them to become damaged.
Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.
Avoid bringing neodymium magnets close to a phone or GPS.
Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are the strongest magnets ever invented. Their strength can shock you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Warning!
So you are aware of why neodymium magnets are so dangerous, see the article titled How dangerous are very powerful neodymium magnets?.
