e-mail: bok@dhit.pl

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our offer. All magnesy neodymowe on our website are available for immediate delivery (check the list). See the magnet price list for more details check the magnet price list

Magnets for water searching F300 GOLD

Where to buy strong neodymium magnet? Holders with magnets in airtight, solid steel casing are ideally suited for use in variable and difficult climate conditions, including snow and rain more...

magnetic holders

Holders with magnets can be used to facilitate production processes, exploring underwater areas, or locating meteorites from gold more...

Order is always shipped on the same day before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x125 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130367

GTIN: 5906301813156

0

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

125 mm

Weight

0.01 g

393.60 with VAT / pcs + price for transport

320.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
320.00 ZŁ
393.60 ZŁ
price from 10 pcs
304.00 ZŁ
373.92 ZŁ
price from 15 pcs
288.00 ZŁ
354.24 ZŁ

Want to talk magnets?

Call us now +48 22 499 98 98 or contact us by means of our online form through our site.
Lifting power as well as structure of magnetic components can be calculated on our modular calculator.

Orders submitted before 14:00 will be dispatched today!

SM 25x125 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 25x125 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130367
GTIN
5906301813156
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
125 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The main mechanism of the magnetic separator is the use of neodymium magnets, which are placed in a casing made of stainless steel usually AISI304. In this way, it is possible to effectively segregate ferromagnetic particles from different substances. A fundamental component of its operation is the repulsion of N and S poles of neodymium magnets, which enables magnetic substances to be attracted. The thickness of the magnet and its structure pitch determine the power and range of the separator's operation.
Generally speaking, magnetic separators serve to separate ferromagnetic particles. If the cans are ferromagnetic, the separator will effectively segregate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers are employed in food production for the elimination of metallic contaminants, such as iron fragments or iron dust. Our rods are built from durable acid-resistant steel, AISI 304, intended for use in food.
Magnetic rollers, otherwise magnetic separators, are employed in metal separation, food production as well as waste processing. They help in removing iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers consist of a neodymium magnet placed in a stainless steel tube casing of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar can be with M8 threaded openings, allowing for simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars differ in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in materials, N42 and N52.
Generally it is believed that the greater the magnet's power, the more effective. Nevertheless, the value of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and specific needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is thin, the magnetic force lines are more compressed. On the other hand, in the case of a thicker magnet, the force lines are extended and reach further.
For creating the casings of magnetic separators - rollers, frequently stainless steel is utilized, especially types AISI 316, AISI 316L, and AISI 304.
In a salt water contact, type AISI 316 steel is highly recommended due to its excellent corrosion resistance.
Magnetic bars are characterized by their specific arrangement of poles and their capability to attract magnetic particles directly onto their surface, as opposed to other separators that often use complex filtration systems.
Technical designations and terms pertaining to magnetic separators comprise amongst others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The result is verified in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. However, some of the downsides may involve higher cost compared to other types of magnets and the need for regular maintenance.
By ensuring proper maintenance of neodymium magnetic rollers, you should they should be regularly cleaned, avoiding temperatures above 80 degrees. The rollers feature waterproofing IP67, so if they are leaky, the magnets inside can oxidize and lose their power. Magnetic field measurements should be carried out once every 24 months. Caution should be taken during use, as there is a risk getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, which are used to remove metal contaminants from bulk and granular materials. They are applied in industries such as food processing, ceramics, and recycling, where metal separation is crucial.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their notable holding force, neodymium magnets have these key benefits:

  • Their strength remains stable, and after around 10 years, it drops only by ~1% (theoretically),
  • They remain magnetized despite exposure to magnetic noise,
  • The use of a polished gold surface provides a eye-catching finish,
  • They possess intense magnetic force measurable at the magnet’s surface,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • The ability for precise shaping or adjustment to individual needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which extends the scope of their use cases,
  • Key role in modern technologies – they serve a purpose in computer drives, electric motors, healthcare devices or even sophisticated instruments,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to external force, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks while also enhances its overall durability,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a damp environment – during outdoor use, we recommend using moisture-resistant magnets, such as those made of polymer,
  • The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is risky,
  • Possible threat linked to microscopic shards may arise, when consumed by mistake, which is crucial in the protection of children. It should also be noted that tiny components from these products can complicate medical imaging once in the system,
  • In cases of tight budgets, neodymium magnet cost may be a barrier,

Detachment force of the magnet in optimal conditionswhat affects it?

The given pulling force of the magnet means the maximum force, calculated under optimal conditions, specifically:

  • with mild steel, used as a magnetic flux conductor
  • having a thickness of no less than 10 millimeters
  • with a polished side
  • with no separation
  • in a perpendicular direction of force
  • at room temperature

Determinants of lifting force in real conditions

The lifting capacity of a magnet depends on in practice the following factors, according to their importance:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, however under attempts to slide the magnet the lifting capacity is smaller. Moreover, even a minimal clearance {between} the magnet and the plate decreases the lifting capacity.

Handle with Care: Neodymium Magnets

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Avoid bringing neodymium magnets close to a phone or GPS.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

  Do not give neodymium magnets to youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can shock you at first.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

Neodymium magnets are particularly delicate, which leads to damage.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

If joining of neodymium magnets is not controlled, then they may crumble and crack. You can't move them to each other. At a distance less than 10 cm you should have them very firmly.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets can become demagnetized at high temperatures.

Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Safety rules!

So you are aware of why neodymium magnets are so dangerous, see the article titled How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98