tel: +48 888 99 98 98

neodymium magnets

We provide red color magnets Nd2Fe14B - our offer. Practically all magnesy on our website are available for immediate purchase (check the list). Check out the magnet pricing for more details check the magnet price list

Magnet for searching F200 GOLD

Where to buy strong magnet? Magnet holders in solid and airtight steel enclosure are ideally suited for use in variable and difficult weather, including during rain and snow more information...

magnets with holders

Holders with magnets can be used to facilitate production processes, underwater exploration, or locating meteorites made of ore see more...

Shipping always shipped on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMP 97x40 [M8+M10] GW F300 Lina / N38 - search holder

search holder

Catalog no 210383

GTIN: 5906301814023

5

Diameter Ø [±0,1 mm]

97 mm

Height [±0,1 mm]

40 mm

Weight

2200 g

Load capacity

380 kg / 3726.53 N

Coating

[NiCuNi] nickel

370.00 with VAT / pcs + price for transport

300.81 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
300.81 ZŁ
370.00 ZŁ
price from 4 pcs
282.76 ZŁ
347.80 ZŁ
price from 8 pcs
264.71 ZŁ
325.60 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

UMP 97x40 [M8+M10] GW F300 Lina / N38 - search holder

Specification/characteristics UMP 97x40 [M8+M10] GW F300 Lina / N38 - search holder
properties
values
Cat. no.
210383
GTIN
5906301814023
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
97 mm [±0,1 mm]
Height
40 mm [±0,1 mm]
Weight
2200 g [±0,1 mm]
Load capacity ~ ?
380 kg / 3726.53 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

For exploring rivers and lakes, we recommend UMP 97x40 [M8+M10] GW F300 Lina / N38, which is exceptionally strong and has an impressive magnetic pulling force of approximately ~380 kg. This model is ideal for retrieving metal objects at the bottom of water bodies.
Magnetic holders are highly effective for searching in water due to their strong attraction capability. UMP 97x40 [M8+M10] GW F300 Lina / N38 weighing 2200 grams with a pulling force of ~380 kg is a great choice for recovering metallic findings.
When choosing a magnet for water exploration, you should pay attention to the number of Gauss or Tesla value, which determines the attraction strength. UMP 97x40 [M8+M10] GW F300 Lina / N38 has a pulling force of approximately ~380 kg, making it a powerful tool for retrieving objects with significant mass. Remember that the maximum strength is achieved with the top attachment, while the side attachment offers only 10%-25% of that power.
The sliding force of a magnetic holder is typically lower than the adhesive force because it depends on the fraction of the magnetic field that interacts with the metal surface. In the case of UMP 97x40 [M8+M10] GW F300 Lina / N38 with a pulling force of ~380 kg, full capabilities are achieved with the upper holder, while the side holder offers only one-fourth to one-quarter of the declared force.
he Lifting force was measured under test conditions, using a smooth S235 low-carbon steel plate with a thickness of 10 mm, with the application of pulling force in a vertical manner. In a situation where the sliding occurs, the magnet's lifting capacity can be 5x times lower! Any gap between the magnet and the plate can result in a reduction in the lifting force.
magnetic holder strength F200 GOLD F300 GOLD

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense strength, neodymium magnets have the following advantages:

  • They do not lose their power (of the magnet). After about 10 years, their strength decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic sources,
  • Thanks to the shiny finish and nickel, gold, or silver coating, they have an aesthetic appearance,
  • They have exceptionally high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C and above...
  • Due to the option of accurate forming or adaptation to individual needs – neodymium magnets can be produced in various forms and dimensions, which amplifies their universality in usage.
  • Wide application in advanced technologically fields – find application in computer drives, electric motors, medical apparatus and other modern machines.

Disadvantages of neodymium magnets:

  • They are prone to breaking as they are fragile when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts and simultaneously increases its overall strength,
  • Magnets lose their strength due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent loss in strength (although it is worth noting that this is dependent on the form and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Possible danger to health from tiny fragments of magnets pose a threat, in case of ingestion, which becomes significant in the context of children's health. Furthermore, small elements of these devices are able to complicate diagnosis after entering the body.

Be Cautious with Neodymium Magnets

  Do not give neodymium magnets to children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets are especially delicate, resulting in their breakage.

Neodymium magnets are highly fragile, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.

People with pacemakers are advised to avoid neodymium magnets.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

In the case of placing a finger in the path of a neodymium magnet, in such a case, a cut or a fracture may occur.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can demagnetize at high temperatures.

Despite the fact that magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are the strongest magnets ever invented. Their power can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Caution!

So that know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98