tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our offer. Practically all "magnets" on our website are available for immediate purchase (see the list). Check out the magnet pricing for more details see the magnet price list

Magnets for fishing F300 GOLD

Where to purchase strong magnet? Magnetic holders in airtight, solid enclosure are excellent for use in variable and difficult weather, including during snow and rain more...

magnets with holders

Magnetic holders can be applied to improve production processes, exploring underwater areas, or locating space rocks made of metal more...

Shipping is always shipped on the same day by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMP 97x40 [M8+M10] GW F300 Lina / N38 - search holder

search holder

Catalog no 210383

GTIN: 5906301814023

5

Diameter Ø [±0,1 mm]

97 mm

Height [±0,1 mm]

40 mm

Weight

2200 g

Load capacity

380 kg / 3726.53 N

Coating

[NiCuNi] nickel

370.00 with VAT / pcs + price for transport

300.81 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
300.81 ZŁ
370.00 ZŁ
price from 5 pcs
282.76 ZŁ
347.80 ZŁ
price from 10 pcs
264.71 ZŁ
325.60 ZŁ

Need help making a decision?

Give us a call +48 22 499 98 98 otherwise contact us by means of our online form through our site.
Specifications as well as form of magnetic components can be analyzed using our modular calculator.

Order by 14:00 and we’ll ship today!

UMP 97x40 [M8+M10] GW F300 Lina / N38 - search holder

Specification/characteristics UMP 97x40 [M8+M10] GW F300 Lina / N38 - search holder
properties
values
Cat. no.
210383
GTIN
5906301814023
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
97 mm [±0,1 mm]
Height
40 mm [±0,1 mm]
Weight
2200 g [±0,1 mm]
Load capacity ~ ?
380 kg / 3726.53 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

For underwater searches, we recommend UMP 97x40 [M8+M10] GW F300 Lina / N38, which is exceptionally strong and has an impressive magnetic pulling force of approximately ~380 kg. This model is ideal for locating metal objects at the bottom of water bodies.
Magnetic holders are ideal for retrieving in water environments due to their high lifting force. UMP 97x40 [M8+M10] GW F300 Lina / N38 weighing 2200 grams with a pulling force of ~380 kg is a perfect solution for recovering metallic findings.
When choosing a magnet for water exploration, you should pay attention to the number of Gauss or Tesla value, which determines the lifting force. UMP 97x40 [M8+M10] GW F300 Lina / N38 has a pulling force of approximately ~380 kg, making it a powerful tool for recovering objects with significant mass. Remember that the maximum strength is achieved with the upper holder, while the side attachment offers only 10%-25% of that power.
The sideways force of a magnet is typically lower than the adhesive force because it depends on the fraction of the magnetic field that interacts with the metal surface. In the case of UMP 97x40 [M8+M10] GW F300 Lina / N38 with a lifting capacity of ~380 kg, full capabilities are achieved with the upper holder, while the side holder offers only 10%-25% of the declared force.
he Lifting force was measured under test conditions, using a smooth S235 low-carbon steel plate with a thickness of 10 mm, with the application of lifting force in a vertical manner. In a situation where the force acts parallelly, the magnet's lifting capacity can be 5 times lower! Any gap between the magnet and the plate can result in a reduction in the lifting force.
magnetic holder strength F200 GOLD F300 GOLD

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their magnetic efficiency, neodymium magnets provide the following advantages:

  • They have stable power, and over around ten years their performance decreases symbolically – ~1% (according to theory),
  • They protect against demagnetization induced by external magnetic fields remarkably well,
  • By applying a reflective layer of gold, the element gains a modern look,
  • They possess significant magnetic force measurable at the magnet’s surface,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • Thanks to the possibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in various configurations, which broadens their application range,
  • Important function in modern technologies – they serve a purpose in HDDs, rotating machines, clinical machines along with other advanced devices,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of NdFeB magnets:

  • They may fracture when subjected to a sudden impact. If the magnets are exposed to shocks, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage and increases its overall strength,
  • They lose field intensity at increased temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to humidity can rust. Therefore, for outdoor applications, we advise waterproof types made of non-metallic composites,
  • The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is restricted,
  • Potential hazard related to magnet particles may arise, if ingested accidentally, which is crucial in the family environments. It should also be noted that tiny components from these assemblies may disrupt scanning when ingested,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Maximum lifting force for a neodymium magnet – what it depends on?

The given lifting capacity of the magnet means the maximum lifting force, assessed in the best circumstances, specifically:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a polished side
  • in conditions of no clearance
  • with vertical force applied
  • under standard ambient temperature

Magnet lifting force in use – key factors

Practical lifting force is dependent on elements, by priority:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on a smooth plate of suitable thickness, under a perpendicular pulling force, however under attempts to slide the magnet the lifting capacity is smaller. Additionally, even a slight gap {between} the magnet and the plate reduces the holding force.

Caution with Neodymium Magnets

  Magnets are not toys, children should not play with them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets are the strongest, most remarkable magnets on earth, and the surprising force between them can shock you at first.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets will attract each other within a distance of several to about 10 cm from each other. Remember not to put fingers between magnets or alternatively in their path when they attract. Magnets, depending on their size, are able even cut off a finger or alternatively there can be a significant pressure or a fracture.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Keep neodymium magnets away from the wallet, computer, and TV.

Neodymium magnets produce intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets are known for their fragility, which can cause them to shatter.

Magnets made of neodymium are extremely delicate, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets can demagnetize at high temperatures.

Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Safety rules!

So you are aware of why neodymium magnets are so dangerous, read the article titled How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98