tel: +48 888 99 98 98

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our store's offer. All "neodymium magnets" on our website are available for immediate delivery (see the list). Check out the magnet price list for more details check the magnet price list

Magnet for water searching F200 GOLD

Where to purchase very strong neodymium magnet? Magnet holders in airtight, solid steel casing are ideally suited for use in variable and difficult weather conditions, including snow and rain more...

magnetic holders

Holders with magnets can be used to enhance production, underwater discoveries, or searching for meteorites from gold more...

Enjoy delivery of your order if the order is placed by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMH 48x11x65 [M6] / N38 - magnetic holder with hook

magnetic holder with hook

Catalog no 310430

GTIN: 5906301814597

5

Diameter Ø [±0,1 mm]

48 mm

Height [±0,1 mm]

65 mm

Height [±0,1 mm]

11 mm

Weight

145 g

Magnetization Direction

↑ axial

Load capacity

88 kg / 862.99 N

Coating

[NiCuNi] nickel

68.88 with VAT / pcs + price for transport

56.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
56.00 ZŁ
68.88 ZŁ
price from 10 pcs
52.64 ZŁ
64.75 ZŁ
price from 20 pcs
49.28 ZŁ
60.61 ZŁ

Want to negotiate?

Contact us by phone +48 22 499 98 98 alternatively send us a note using our online form the contact section.
Lifting power as well as appearance of neodymium magnets can be calculated using our our magnetic calculator.

Same-day shipping for orders placed before 14:00.

UMH 48x11x65 [M6] / N38 - magnetic holder with hook

Specification/characteristics UMH 48x11x65 [M6] / N38 - magnetic holder with hook
properties
values
Cat. no.
310430
GTIN
5906301814597
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
48 mm [±0,1 mm]
Height
65 mm [±0,1 mm]
Height
11 mm [±0,1 mm]
Weight
145 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
88 kg / 862.99 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their magnetic performance, neodymium magnets are valued for these benefits:

  • Their strength is durable, and after around 10 years, it drops only by ~1% (according to research),
  • They protect against demagnetization induced by surrounding magnetic influence remarkably well,
  • The use of a decorative nickel surface provides a smooth finish,
  • They possess significant magnetic force measurable at the magnet’s surface,
  • With the right combination of materials, they reach increased thermal stability, enabling operation at or above 230°C (depending on the design),
  • With the option for fine forming and targeted design, these magnets can be produced in various shapes and sizes, greatly improving design adaptation,
  • Key role in advanced technical fields – they are utilized in data storage devices, electric motors, healthcare devices or even sophisticated instruments,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of rare earth magnets:

  • They may fracture when subjected to a sudden impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and enhances its overall resistance,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to humidity can degrade. Therefore, for outdoor applications, we advise waterproof types made of plastic,
  • Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing complex structures directly in the magnet,
  • Health risk linked to microscopic shards may arise, especially if swallowed, which is crucial in the context of child safety. It should also be noted that tiny components from these products can complicate medical imaging after being swallowed,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Optimal lifting capacity of a neodymium magnetwhat affects it?

The given pulling force of the magnet means the maximum force, calculated in ideal conditions, namely:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • with zero air gap
  • with vertical force applied
  • at room temperature

Practical lifting capacity: influencing factors

In practice, the holding capacity of a magnet is conditioned by the following aspects, from crucial to less important:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed using a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular detachment force, whereas under shearing force the holding force is lower. Moreover, even a slight gap {between} the magnet’s surface and the plate reduces the lifting capacity.

Caution with Neodymium Magnets

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

If joining of neodymium magnets is not controlled, at that time they may crumble and crack. You can't move them to each other. At a distance less than 10 cm you should have them very firmly.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

  Neodymium magnets should not be in the vicinity children.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Keep neodymium magnets away from GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can demagnetize at high temperatures.

In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their strength can shock you.

Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.

Neodymium magnets are highly fragile, they easily fall apart as well as can become damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Exercise caution!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98