tel: +48 888 99 98 98

neodymium magnets

We provide red color magnets Nd2Fe14B - our store's offer. All "magnets" in our store are in stock for immediate purchase (check the list). Check out the magnet pricing for more details see the magnet price list

Magnet for water searching F300 GOLD

Where to purchase very strong magnet? Holders with magnets in solid and airtight enclosure are excellent for use in difficult weather, including in the rain and snow more information...

magnetic holders

Magnetic holders can be applied to facilitate manufacturing, exploring underwater areas, or finding meteorites from gold see more...

Enjoy shipping of your order if the order is placed before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMH 48x11x65 [M6] / N38 - magnetic holder with hook

magnetic holder with hook

Catalog no 310430

GTIN: 5906301814597

5

Diameter Ø [±0,1 mm]

48 mm

Height [±0,1 mm]

65 mm

Height [±0,1 mm]

11 mm

Weight

145 g

Magnetization Direction

↑ axial

Load capacity

88 kg / 862.99 N

Coating

[NiCuNi] nickel

68.88 with VAT / pcs + price for transport

56.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
56.00 ZŁ
68.88 ZŁ
price from 10 pcs
52.64 ZŁ
64.75 ZŁ
price from 20 pcs
49.28 ZŁ
60.61 ZŁ

Can't decide what to choose?

Call us now +48 22 499 98 98 alternatively send us a note using form through our site.
Lifting power and shape of neodymium magnets can be tested on our force calculator.

Same-day processing for orders placed before 14:00.

UMH 48x11x65 [M6] / N38 - magnetic holder with hook

Specification/characteristics UMH 48x11x65 [M6] / N38 - magnetic holder with hook
properties
values
Cat. no.
310430
GTIN
5906301814597
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
48 mm [±0,1 mm]
Height
65 mm [±0,1 mm]
Height
11 mm [±0,1 mm]
Weight
145 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
88 kg / 862.99 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their strong power, neodymium magnets have these key benefits:

  • They have stable power, and over more than 10 years their attraction force decreases symbolically – ~1% (according to theory),
  • They show strong resistance to demagnetization from external field exposure,
  • Thanks to the polished finish and silver coating, they have an visually attractive appearance,
  • They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for tailored forming and precise design, these magnets can be produced in various shapes and sizes, greatly improving engineering flexibility,
  • Significant impact in cutting-edge sectors – they are used in HDDs, electromechanical systems, clinical machines or even high-tech tools,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They can break when subjected to a heavy impact. If the magnets are exposed to shocks, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks while also strengthens its overall resistance,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a damp environment, especially when used outside, we recommend using moisture-resistant magnets, such as those made of plastic,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing threads directly in the magnet,
  • Potential hazard due to small fragments may arise, especially if swallowed, which is important in the family environments. It should also be noted that minuscule fragments from these products might complicate medical imaging when ingested,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Maximum lifting capacity of the magnetwhat affects it?

The given strength of the magnet corresponds to the optimal strength, measured under optimal conditions, namely:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a smooth surface
  • with zero air gap
  • in a perpendicular direction of force
  • under standard ambient temperature

What influences lifting capacity in practice

Practical lifting force is determined by elements, by priority:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, whereas under attempts to slide the magnet the holding force is lower. Additionally, even a minimal clearance {between} the magnet and the plate reduces the load capacity.

Safety Precautions

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Neodymium magnets generate strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are particularly fragile, resulting in shattering.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Neodymium magnets will bounce and also clash together within a distance of several to around 10 cm from each other.

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

  Magnets are not toys, children should not play with them.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Caution!

To show why neodymium magnets are so dangerous, read the article - How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98