UMH 48x11x65 [M6] / N38 - magnetic holder with hook
magnetic holder with hook
Catalog no 310430
GTIN: 5906301814597
Diameter Ø [±0,1 mm]
48 mm
Height [±0,1 mm]
65 mm
Height [±0,1 mm]
11 mm
Weight
145 g
Magnetization Direction
↑ axial
Load capacity
88 kg / 862.99 N
Coating
[NiCuNi] nickel
68.88 ZŁ with VAT / pcs + price for transport
56.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Hunting for a discount?
Call us
+48 888 99 98 98
or contact us through
request form
through our site.
Force and structure of neodymium magnets can be analyzed using our
online calculation tool.
Orders placed before 14:00 will be shipped the same business day.
UMH 48x11x65 [M6] / N38 - magnetic holder with hook
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their consistent power, neodymium magnets have these key benefits:
- They retain their magnetic properties for nearly 10 years – the loss is just ~1% (according to analyses),
- They protect against demagnetization induced by surrounding magnetic fields very well,
- In other words, due to the metallic nickel coating, the magnet obtains an stylish appearance,
- Magnetic induction on the surface of these magnets is impressively powerful,
- Thanks to their enhanced temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
- The ability for accurate shaping and adjustment to specific needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which enhances their versatility in applications,
- Important function in modern technologies – they find application in computer drives, rotating machines, clinical machines and high-tech tools,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of neodymium magnets:
- They can break when subjected to a heavy impact. If the magnets are exposed to external force, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and additionally increases its overall durability,
- High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a humid environment – during outdoor use, we recommend using waterproof magnets, such as those made of polymer,
- Limited ability to create complex details in the magnet – the use of a external casing is recommended,
- Safety concern linked to microscopic shards may arise, when consumed by mistake, which is notable in the health of young users. Moreover, miniature parts from these assemblies might complicate medical imaging after being swallowed,
- High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which can restrict large-scale applications
Optimal lifting capacity of a neodymium magnet – what affects it?
The given pulling force of the magnet means the maximum force, calculated in a perfect environment, that is:
- with mild steel, used as a magnetic flux conductor
- with a thickness of minimum 10 mm
- with a refined outer layer
- with zero air gap
- with vertical force applied
- in normal thermal conditions
Magnet lifting force in use – key factors
In practice, the holding capacity of a magnet is affected by these factors, arranged from the most important to the least relevant:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was carried out on plates with a smooth surface of optimal thickness, under perpendicular forces, whereas under shearing force the load capacity is reduced by as much as 5 times. Additionally, even a slight gap {between} the magnet’s surface and the plate lowers the holding force.
Exercise Caution with Neodymium Magnets
Neodymium magnets can demagnetize at high temperatures.
Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
People with pacemakers are advised to avoid neodymium magnets.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Keep neodymium magnets away from TV, wallet, and computer HDD.
Neodymium magnets produce strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnetic are extremely fragile, leading to shattering.
Magnets made of neodymium are extremely delicate, and by joining them in an uncontrolled manner, they will break. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
If joining of neodymium magnets is not under control, at that time they may crumble and crack. Remember not to approach them to each other or hold them firmly in hands at a distance less than 10 cm.
Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can shock you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
It is essential to maintain neodymium magnets away from children.
Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Avoid bringing neodymium magnets close to a phone or GPS.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Warning!
In order for you to know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous powerful neodymium magnets.
