UMH 48x11x65 [M6] / N38 - magnetic holder with hook
magnetic holder with hook
Catalog no 310430
GTIN: 5906301814597
Diameter Ø [±0,1 mm]
48 mm
Height [±0,1 mm]
65 mm
Height [±0,1 mm]
11 mm
Weight
145 g
Magnetization Direction
↑ axial
Load capacity
88 kg / 862.99 N
Coating
[NiCuNi] nickel
68.88 ZŁ with VAT / pcs + price for transport
56.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure where to buy?
Pick up the phone and ask
+48 22 499 98 98
or drop us a message via
contact form
our website.
Force as well as form of a neodymium magnet can be analyzed on our
magnetic mass calculator.
Order by 14:00 and we’ll ship today!
UMH 48x11x65 [M6] / N38 - magnetic holder with hook
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Besides their durability, neodymium magnets are valued for these benefits:
- They virtually do not lose power, because even after ten years, the performance loss is only ~1% (according to literature),
- Their ability to resist magnetic interference from external fields is impressive,
- The use of a polished silver surface provides a refined finish,
- Magnetic induction on the surface of these magnets is very strong,
- These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to build),
- The ability for accurate shaping as well as adaptation to individual needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which enhances their versatility in applications,
- Wide application in new technology industries – they serve a purpose in hard drives, electric motors, diagnostic apparatus or even high-tech tools,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, while occupying minimal space,
Disadvantages of rare earth magnets:
- They are prone to breaking when subjected to a strong impact. If the magnets are exposed to shocks, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time enhances its overall robustness,
- High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a moist environment. For outdoor use, we recommend using encapsulated magnets, such as those made of non-metallic materials,
- Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing fine shapes directly in the magnet,
- Health risk related to magnet particles may arise, especially if swallowed, which is notable in the context of child safety. It should also be noted that small elements from these assemblies may complicate medical imaging once in the system,
- In cases of large-volume purchasing, neodymium magnet cost is a challenge,
Highest magnetic holding force – what it depends on?
The given lifting capacity of the magnet means the maximum lifting force, assessed in a perfect environment, specifically:
- with mild steel, serving as a magnetic flux conductor
- of a thickness of at least 10 mm
- with a polished side
- with no separation
- with vertical force applied
- in normal thermal conditions
Determinants of practical lifting force of a magnet
Practical lifting force is determined by factors, by priority:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was tested on the plate surface of 20 mm thickness, when the force acted perpendicularly, in contrast under shearing force the load capacity is reduced by as much as 75%. Additionally, even a slight gap {between} the magnet and the plate decreases the lifting capacity.
Safety Precautions
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
Neodymium magnets bounce and also touch each other mutually within a distance of several to around 10 cm from each other.
Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Keep neodymium magnets away from the wallet, computer, and TV.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their power can surprise you.
Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are extremely delicate, they easily break as well as can become damaged.
Neodymium magnets are delicate as well as will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
Safety precautions!
So you are aware of why neodymium magnets are so dangerous, read the article titled How dangerous are very strong neodymium magnets?.
