tel: +48 22 499 98 98

neodymium magnets

We provide blue color magnets Nd2Fe14B - our proposal. Practically all "magnets" in our store are available for immediate delivery (see the list). See the magnet pricing for more details check the magnet price list

Magnets for treasure hunters F300 GOLD

Where to buy very strong magnet? Magnetic holders in solid and airtight steel casing are perfect for use in difficult, demanding climate conditions, including during snow and rain read...

magnets with holders

Magnetic holders can be used to enhance production processes, exploring underwater areas, or searching for meteorites from gold read...

Shipping is shipped on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMH 48x11x65 [M6] / N38 - magnetic holder with hook

magnetic holder with hook

Catalog no 310430

GTIN: 5906301814597

5

Diameter Ø [±0,1 mm]

48 mm

Height [±0,1 mm]

65 mm

Height [±0,1 mm]

11 mm

Weight

145 g

Magnetization Direction

↑ axial

Load capacity

88 kg / 862.99 N

Coating

[NiCuNi] nickel

68.88 with VAT / pcs + price for transport

56.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
56.00 ZŁ
68.88 ZŁ
price from 10 pcs
52.64 ZŁ
64.75 ZŁ
price from 20 pcs
49.28 ZŁ
60.61 ZŁ

Can't decide what to choose?

Call us +48 22 499 98 98 alternatively drop us a message through request form through our site.
Parameters and shape of a neodymium magnet can be calculated on our magnetic calculator.

Orders submitted before 14:00 will be dispatched today!

UMH 48x11x65 [M6] / N38 - magnetic holder with hook

Specification/characteristics UMH 48x11x65 [M6] / N38 - magnetic holder with hook
properties
values
Cat. no.
310430
GTIN
5906301814597
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
48 mm [±0,1 mm]
Height
65 mm [±0,1 mm]
Height
11 mm [±0,1 mm]
Weight
145 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
88 kg / 862.99 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their tremendous pulling force, neodymium magnets offer the following advantages:

  • They retain their full power for nearly 10 years – the drop is just ~1% (based on simulations),
  • They remain magnetized despite exposure to strong external fields,
  • By applying a bright layer of silver, the element gains a clean look,
  • Magnetic induction on the surface of these magnets is very strong,
  • Thanks to their exceptional temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
  • With the option for tailored forming and targeted design, these magnets can be produced in numerous shapes and sizes, greatly improving application potential,
  • Significant impact in new technology industries – they are used in HDDs, electric drives, medical equipment along with sophisticated instruments,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, in miniature format,

Disadvantages of NdFeB magnets:

  • They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to physical collisions, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time increases its overall robustness,
  • High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of rubber for outdoor use,
  • Limited ability to create precision features in the magnet – the use of a external casing is recommended,
  • Potential hazard from tiny pieces may arise, if ingested accidentally, which is significant in the health of young users. Moreover, miniature parts from these magnets have the potential to disrupt scanning once in the system,
  • In cases of large-volume purchasing, neodymium magnet cost may be a barrier,

Maximum lifting force for a neodymium magnet – what contributes to it?

The given lifting capacity of the magnet represents the maximum lifting force, determined under optimal conditions, specifically:

  • with mild steel, used as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a smooth surface
  • with zero air gap
  • with vertical force applied
  • at room temperature

Determinants of lifting force in real conditions

Practical lifting force is dependent on elements, by priority:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, however under shearing force the holding force is lower. Additionally, even a slight gap {between} the magnet’s surface and the plate reduces the holding force.

Safety Precautions

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Neodymium magnets are fragile and can easily break and get damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

 Maintain neodymium magnets away from children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can shock you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets will attract each other within a distance of several to about 10 cm from each other. Remember not to put fingers between magnets or alternatively in their path when they attract. Depending on how massive the neodymium magnets are, they can lead to a cut or alternatively a fracture.

Pay attention!

So you are aware of why neodymium magnets are so dangerous, read the article titled How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98