MW 5x4 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010089
GTIN: 5906301810889
Diameter Ø [±0,1 mm]
5 mm
Height [±0,1 mm]
4 mm
Weight
0.59 g
Magnetization Direction
↑ axial
Load capacity
1.11 kg / 10.89 N
Magnetic Induction
524.45 mT
Coating
[NiCuNi] nickel
0.369 ZŁ with VAT / pcs + price for transport
0.300 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Looking for a better price?
					Give us a call
					+48 888 99 98 98
					if you prefer contact us using
					contact form
					the contact form page.
					Weight along with appearance of neodymium magnets can be calculated on our
					magnetic calculator.
				
Orders placed before 14:00 will be shipped the same business day.
MW 5x4 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a coating of gold to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.
In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, and also in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often coated with thin coatings, such as silver, to preserve them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can cause a deterioration of their magnetic strength, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic strength.
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their immense pulling force, neodymium magnets offer the following advantages:
- They virtually do not lose strength, because even after 10 years, the decline in efficiency is only ~1% (based on calculations),
 - They show exceptional resistance to demagnetization from external field exposure,
 - Thanks to the polished finish and silver coating, they have an elegant appearance,
 - The outer field strength of the magnet shows remarkable magnetic properties,
 - Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
 - With the option for tailored forming and personalized design, these magnets can be produced in numerous shapes and sizes, greatly improving application potential,
 - Significant impact in cutting-edge sectors – they serve a purpose in data storage devices, electric drives, diagnostic apparatus along with high-tech tools,
 - Thanks to their power density, small magnets offer high magnetic performance, while occupying minimal space,
 
Disadvantages of magnetic elements:
- They are prone to breaking when subjected to a strong impact. If the magnets are exposed to physical collisions, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage and increases its overall strength,
 - Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
 - Magnets exposed to wet conditions can rust. Therefore, for outdoor applications, we suggest waterproof types made of non-metallic composites,
 - Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing complex structures directly in the magnet,
 - Health risk related to magnet particles may arise, when consumed by mistake, which is significant in the protection of children. Additionally, tiny components from these assemblies have the potential to complicate medical imaging after being swallowed,
 - High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which may limit large-scale applications
 
Maximum holding power of the magnet – what it depends on?
The given pulling force of the magnet represents the maximum force, determined in the best circumstances, namely:
- with the use of low-carbon steel plate serving as a magnetic yoke
 - of a thickness of at least 10 mm
 - with a refined outer layer
 - in conditions of no clearance
 - in a perpendicular direction of force
 - at room temperature
 
Lifting capacity in real conditions – factors
The lifting capacity of a magnet is determined by in practice key elements, from primary to secondary:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
 - Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
 - Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
 - Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
 - Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
 - Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
 
* Holding force was measured on the plate surface of 20 mm thickness, when the force acted perpendicularly, however under parallel forces the load capacity is reduced by as much as fivefold. Additionally, even a small distance {between} the magnet and the plate lowers the load capacity.
Precautions
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are the strongest magnets ever created, and their strength can surprise you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Do not bring neodymium magnets close to GPS and smartphones.
Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Magnets made of neodymium are characterized by being fragile, which can cause them to crumble.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
Magnets are not toys, children should not play with them.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Neodymium magnets can become demagnetized at high temperatures.
While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Keep neodymium magnets away from people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
Magnets attract each other within a distance of several to about 10 cm from each other. Remember not to insert fingers between magnets or alternatively in their path when they attract. Magnets, depending on their size, can even cut off a finger or there can be a severe pressure or a fracture.
Exercise caution!
So that know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous very powerful neodymium magnets.