MW 5x4 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010089
GTIN/EAN: 5906301810889
Diameter Ø
5 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
0.59 g
Magnetization Direction
↑ axial
Load capacity
0.84 kg / 8.26 N
Magnetic Induction
524.45 mT / 5244 Gs
Coating
[NiCuNi] Nickel
0.369 ZŁ with VAT / pcs + price for transport
0.300 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 888 99 98 98
alternatively drop us a message through
request form
the contact section.
Parameters along with form of magnetic components can be estimated with our
modular calculator.
Same-day shipping for orders placed before 14:00.
Technical details - MW 5x4 / N38 - cylindrical magnet
Specification / characteristics - MW 5x4 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010089 |
| GTIN/EAN | 5906301810889 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 5 mm [±0,1 mm] |
| Height | 4 mm [±0,1 mm] |
| Weight | 0.59 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.84 kg / 8.26 N |
| Magnetic Induction ~ ? | 524.45 mT / 5244 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical modeling of the magnet - data
Presented values represent the outcome of a physical simulation. Results were calculated on models for the material Nd2Fe14B. Real-world conditions might slightly differ from theoretical values. Please consider these calculations as a reference point when designing systems.
Table 1: Static force (pull vs gap) - characteristics
MW 5x4 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
5236 Gs
523.6 mT
|
0.84 kg / 1.85 lbs
840.0 g / 8.2 N
|
weak grip |
| 1 mm |
3243 Gs
324.3 mT
|
0.32 kg / 0.71 lbs
322.1 g / 3.2 N
|
weak grip |
| 2 mm |
1850 Gs
185.0 mT
|
0.10 kg / 0.23 lbs
104.8 g / 1.0 N
|
weak grip |
| 3 mm |
1076 Gs
107.6 mT
|
0.04 kg / 0.08 lbs
35.5 g / 0.3 N
|
weak grip |
| 5 mm |
428 Gs
42.8 mT
|
0.01 kg / 0.01 lbs
5.6 g / 0.1 N
|
weak grip |
| 10 mm |
89 Gs
8.9 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
weak grip |
| 15 mm |
31 Gs
3.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
| 20 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
| 30 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
Table 2: Shear hold (wall)
MW 5x4 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.17 kg / 0.37 lbs
168.0 g / 1.6 N
|
| 1 mm | Stal (~0.2) |
0.06 kg / 0.14 lbs
64.0 g / 0.6 N
|
| 2 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
20.0 g / 0.2 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (shearing) - vertical pull
MW 5x4 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.25 kg / 0.56 lbs
252.0 g / 2.5 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.17 kg / 0.37 lbs
168.0 g / 1.6 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.08 kg / 0.19 lbs
84.0 g / 0.8 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.42 kg / 0.93 lbs
420.0 g / 4.1 N
|
Table 4: Steel thickness (substrate influence) - power losses
MW 5x4 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.08 kg / 0.19 lbs
84.0 g / 0.8 N
|
| 1 mm |
|
0.21 kg / 0.46 lbs
210.0 g / 2.1 N
|
| 2 mm |
|
0.42 kg / 0.93 lbs
420.0 g / 4.1 N
|
| 3 mm |
|
0.63 kg / 1.39 lbs
630.0 g / 6.2 N
|
| 5 mm |
|
0.84 kg / 1.85 lbs
840.0 g / 8.2 N
|
| 10 mm |
|
0.84 kg / 1.85 lbs
840.0 g / 8.2 N
|
| 11 mm |
|
0.84 kg / 1.85 lbs
840.0 g / 8.2 N
|
| 12 mm |
|
0.84 kg / 1.85 lbs
840.0 g / 8.2 N
|
Table 5: Thermal stability (stability) - power drop
MW 5x4 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.84 kg / 1.85 lbs
840.0 g / 8.2 N
|
OK |
| 40 °C | -2.2% |
0.82 kg / 1.81 lbs
821.5 g / 8.1 N
|
OK |
| 60 °C | -4.4% |
0.80 kg / 1.77 lbs
803.0 g / 7.9 N
|
OK |
| 80 °C | -6.6% |
0.78 kg / 1.73 lbs
784.6 g / 7.7 N
|
|
| 100 °C | -28.8% |
0.60 kg / 1.32 lbs
598.1 g / 5.9 N
|
Table 6: Two magnets (repulsion) - field range
MW 5x4 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
3.32 kg / 7.32 lbs
5 894 Gs
|
0.50 kg / 1.10 lbs
498 g / 4.9 N
|
N/A |
| 1 mm |
2.14 kg / 4.72 lbs
8 408 Gs
|
0.32 kg / 0.71 lbs
321 g / 3.1 N
|
1.93 kg / 4.24 lbs
~0 Gs
|
| 2 mm |
1.27 kg / 2.81 lbs
6 486 Gs
|
0.19 kg / 0.42 lbs
191 g / 1.9 N
|
1.15 kg / 2.53 lbs
~0 Gs
|
| 3 mm |
0.73 kg / 1.61 lbs
4 909 Gs
|
0.11 kg / 0.24 lbs
109 g / 1.1 N
|
0.66 kg / 1.45 lbs
~0 Gs
|
| 5 mm |
0.24 kg / 0.53 lbs
2 805 Gs
|
0.04 kg / 0.08 lbs
36 g / 0.4 N
|
0.21 kg / 0.47 lbs
~0 Gs
|
| 10 mm |
0.02 kg / 0.05 lbs
857 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
177 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
16 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
6 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
4 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Safety (HSE) (electronics) - warnings
MW 5x4 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 3.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 2.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 2.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 1.5 cm |
| Car key | 50 Gs (5.0 mT) | 1.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Dynamics (cracking risk) - collision effects
MW 5x4 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
38.06 km/h
(10.57 m/s)
|
0.03 J | |
| 30 mm |
65.91 km/h
(18.31 m/s)
|
0.10 J | |
| 50 mm |
85.09 km/h
(23.64 m/s)
|
0.16 J | |
| 100 mm |
120.34 km/h
(33.43 m/s)
|
0.33 J |
Table 9: Surface protection spec
MW 5x4 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MW 5x4 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 1 046 Mx | 10.5 µWb |
| Pc Coefficient | 0.79 | High (Stable) |
Table 11: Hydrostatics and buoyancy
MW 5x4 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.84 kg | Standard |
| Water (riverbed) |
0.96 kg
(+0.12 kg buoyancy gain)
|
+14.5% |
1. Shear force
*Warning: On a vertical wall, the magnet holds only approx. 20-30% of its max power.
2. Plate thickness effect
*Thin steel (e.g. 0.5mm PC case) significantly limits the holding force.
3. Thermal stability
*For standard magnets, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.79
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
See also proposals
Pros and cons of rare earth magnets.
Advantages
- Their magnetic field remains stable, and after approximately ten years it decreases only by ~1% (according to research),
- Magnets effectively resist against loss of magnetization caused by external fields,
- The use of an metallic coating of noble metals (nickel, gold, silver) causes the element to have aesthetics,
- The surface of neodymium magnets generates a strong magnetic field – this is one of their assets,
- Neodymium magnets are characterized by extremely high magnetic induction on the magnet surface and can work (depending on the form) even at a temperature of 230°C or more...
- Considering the potential of free forming and customization to unique needs, NdFeB magnets can be produced in a variety of shapes and sizes, which makes them more universal,
- Versatile presence in high-tech industry – they serve a role in computer drives, motor assemblies, precision medical tools, as well as complex engineering applications.
- Relatively small size with high pulling force – neodymium magnets offer impressive pulling force in small dimensions, which allows their use in small systems
Limitations
- At very strong impacts they can crack, therefore we recommend placing them in special holders. A metal housing provides additional protection against damage, as well as increases the magnet's durability.
- When exposed to high temperature, neodymium magnets suffer a drop in power. Often, when the temperature exceeds 80°C, their power decreases (depending on the size, as well as shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- When exposed to humidity, magnets start to rust. To use them in conditions outside, it is recommended to use protective magnets, such as magnets in rubber or plastics, which secure oxidation as well as corrosion.
- Limited ability of producing threads in the magnet and complicated shapes - preferred is a housing - magnetic holder.
- Possible danger resulting from small fragments of magnets pose a threat, in case of ingestion, which gains importance in the context of child safety. Additionally, tiny parts of these devices are able to be problematic in diagnostics medical in case of swallowing.
- With large orders the cost of neodymium magnets can be a barrier,
Pull force analysis
Maximum holding power of the magnet – what affects it?
- with the contact of a sheet made of special test steel, guaranteeing maximum field concentration
- with a thickness no less than 10 mm
- characterized by smoothness
- under conditions of ideal adhesion (surface-to-surface)
- for force applied at a right angle (in the magnet axis)
- at conditions approx. 20°C
Key elements affecting lifting force
- Space between magnet and steel – even a fraction of a millimeter of distance (caused e.g. by veneer or unevenness) drastically reduces the pulling force, often by half at just 0.5 mm.
- Force direction – remember that the magnet has greatest strength perpendicularly. Under shear forces, the capacity drops significantly, often to levels of 20-30% of the maximum value.
- Substrate thickness – to utilize 100% power, the steel must be sufficiently thick. Paper-thin metal limits the lifting capacity (the magnet "punches through" it).
- Metal type – different alloys attracts identically. Alloy additives weaken the interaction with the magnet.
- Surface condition – smooth surfaces guarantee perfect abutment, which improves field saturation. Uneven metal reduce efficiency.
- Temperature – temperature increase causes a temporary drop of induction. Check the maximum operating temperature for a given model.
Lifting capacity testing was carried out on a smooth plate of optimal thickness, under a perpendicular pulling force, however under attempts to slide the magnet the lifting capacity is smaller. Moreover, even a small distance between the magnet’s surface and the plate reduces the load capacity.
Warnings
Implant safety
Life threat: Neodymium magnets can turn off pacemakers and defibrillators. Do not approach if you have medical devices.
Serious injuries
Big blocks can smash fingers in a fraction of a second. Under no circumstances place your hand betwixt two attracting surfaces.
Impact on smartphones
An intense magnetic field disrupts the functioning of compasses in phones and navigation systems. Keep magnets close to a smartphone to prevent damaging the sensors.
Thermal limits
Regular neodymium magnets (N-type) lose magnetization when the temperature surpasses 80°C. This process is irreversible.
Dust is flammable
Combustion risk: Neodymium dust is explosive. Avoid machining magnets without safety gear as this risks ignition.
Data carriers
Powerful magnetic fields can erase data on payment cards, HDDs, and other magnetic media. Keep a distance of min. 10 cm.
Handling guide
Before use, read the rules. Uncontrolled attraction can break the magnet or injure your hand. Think ahead.
Eye protection
Neodymium magnets are ceramic materials, which means they are prone to chipping. Impact of two magnets will cause them cracking into shards.
Metal Allergy
Warning for allergy sufferers: The Ni-Cu-Ni coating contains nickel. If skin irritation occurs, cease working with magnets and use protective gear.
This is not a toy
Adult use only. Small elements can be swallowed, causing severe trauma. Keep away from kids and pets.
