MW 5x4 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010089
GTIN/EAN: 5906301810889
Diameter Ø
5 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
0.59 g
Magnetization Direction
↑ axial
Load capacity
0.84 kg / 8.26 N
Magnetic Induction
524.45 mT / 5244 Gs
Coating
[NiCuNi] Nickel
0.369 ZŁ with VAT / pcs + price for transport
0.300 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us
+48 888 99 98 98
or drop us a message via
our online form
the contact page.
Specifications and shape of neodymium magnets can be verified with our
magnetic mass calculator.
Order by 14:00 and we’ll ship today!
Physical properties - MW 5x4 / N38 - cylindrical magnet
Specification / characteristics - MW 5x4 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010089 |
| GTIN/EAN | 5906301810889 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 5 mm [±0,1 mm] |
| Height | 4 mm [±0,1 mm] |
| Weight | 0.59 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.84 kg / 8.26 N |
| Magnetic Induction ~ ? | 524.45 mT / 5244 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering modeling of the magnet - data
Presented information represent the outcome of a physical simulation. Results rely on models for the class Nd2Fe14B. Actual parameters may deviate from the simulation results. Treat these data as a preliminary roadmap during assembly planning.
Table 1: Static pull force (force vs distance) - interaction chart
MW 5x4 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
5236 Gs
523.6 mT
|
0.84 kg / 1.85 lbs
840.0 g / 8.2 N
|
weak grip |
| 1 mm |
3243 Gs
324.3 mT
|
0.32 kg / 0.71 lbs
322.1 g / 3.2 N
|
weak grip |
| 2 mm |
1850 Gs
185.0 mT
|
0.10 kg / 0.23 lbs
104.8 g / 1.0 N
|
weak grip |
| 3 mm |
1076 Gs
107.6 mT
|
0.04 kg / 0.08 lbs
35.5 g / 0.3 N
|
weak grip |
| 5 mm |
428 Gs
42.8 mT
|
0.01 kg / 0.01 lbs
5.6 g / 0.1 N
|
weak grip |
| 10 mm |
89 Gs
8.9 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
weak grip |
| 15 mm |
31 Gs
3.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
| 20 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
| 30 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
Table 2: Vertical force (wall)
MW 5x4 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.17 kg / 0.37 lbs
168.0 g / 1.6 N
|
| 1 mm | Stal (~0.2) |
0.06 kg / 0.14 lbs
64.0 g / 0.6 N
|
| 2 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
20.0 g / 0.2 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (shearing) - vertical pull
MW 5x4 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.25 kg / 0.56 lbs
252.0 g / 2.5 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.17 kg / 0.37 lbs
168.0 g / 1.6 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.08 kg / 0.19 lbs
84.0 g / 0.8 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.42 kg / 0.93 lbs
420.0 g / 4.1 N
|
Table 4: Steel thickness (saturation) - power losses
MW 5x4 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.08 kg / 0.19 lbs
84.0 g / 0.8 N
|
| 1 mm |
|
0.21 kg / 0.46 lbs
210.0 g / 2.1 N
|
| 2 mm |
|
0.42 kg / 0.93 lbs
420.0 g / 4.1 N
|
| 3 mm |
|
0.63 kg / 1.39 lbs
630.0 g / 6.2 N
|
| 5 mm |
|
0.84 kg / 1.85 lbs
840.0 g / 8.2 N
|
| 10 mm |
|
0.84 kg / 1.85 lbs
840.0 g / 8.2 N
|
| 11 mm |
|
0.84 kg / 1.85 lbs
840.0 g / 8.2 N
|
| 12 mm |
|
0.84 kg / 1.85 lbs
840.0 g / 8.2 N
|
Table 5: Working in heat (stability) - resistance threshold
MW 5x4 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.84 kg / 1.85 lbs
840.0 g / 8.2 N
|
OK |
| 40 °C | -2.2% |
0.82 kg / 1.81 lbs
821.5 g / 8.1 N
|
OK |
| 60 °C | -4.4% |
0.80 kg / 1.77 lbs
803.0 g / 7.9 N
|
OK |
| 80 °C | -6.6% |
0.78 kg / 1.73 lbs
784.6 g / 7.7 N
|
|
| 100 °C | -28.8% |
0.60 kg / 1.32 lbs
598.1 g / 5.9 N
|
Table 6: Two magnets (repulsion) - field range
MW 5x4 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Sliding Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
3.32 kg / 7.32 lbs
5 894 Gs
|
0.50 kg / 1.10 lbs
498 g / 4.9 N
|
N/A |
| 1 mm |
2.14 kg / 4.72 lbs
8 408 Gs
|
0.32 kg / 0.71 lbs
321 g / 3.1 N
|
1.93 kg / 4.24 lbs
~0 Gs
|
| 2 mm |
1.27 kg / 2.81 lbs
6 486 Gs
|
0.19 kg / 0.42 lbs
191 g / 1.9 N
|
1.15 kg / 2.53 lbs
~0 Gs
|
| 3 mm |
0.73 kg / 1.61 lbs
4 909 Gs
|
0.11 kg / 0.24 lbs
109 g / 1.1 N
|
0.66 kg / 1.45 lbs
~0 Gs
|
| 5 mm |
0.24 kg / 0.53 lbs
2 805 Gs
|
0.04 kg / 0.08 lbs
36 g / 0.4 N
|
0.21 kg / 0.47 lbs
~0 Gs
|
| 10 mm |
0.02 kg / 0.05 lbs
857 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
177 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
16 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
6 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
4 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Hazards (electronics) - precautionary measures
MW 5x4 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 3.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 2.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 2.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 1.5 cm |
| Car key | 50 Gs (5.0 mT) | 1.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Dynamics (cracking risk) - collision effects
MW 5x4 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
38.06 km/h
(10.57 m/s)
|
0.03 J | |
| 30 mm |
65.91 km/h
(18.31 m/s)
|
0.10 J | |
| 50 mm |
85.09 km/h
(23.64 m/s)
|
0.16 J | |
| 100 mm |
120.34 km/h
(33.43 m/s)
|
0.33 J |
Table 9: Corrosion resistance
MW 5x4 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Flux)
MW 5x4 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 1 046 Mx | 10.5 µWb |
| Pc Coefficient | 0.79 | High (Stable) |
Table 11: Underwater work (magnet fishing)
MW 5x4 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.84 kg | Standard |
| Water (riverbed) |
0.96 kg
(+0.12 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Caution: On a vertical surface, the magnet retains merely ~20% of its perpendicular strength.
2. Plate thickness effect
*Thin steel (e.g. 0.5mm PC case) drastically weakens the holding force.
3. Power loss vs temp
*For N38 grade, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.79
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other offers
Strengths as well as weaknesses of neodymium magnets.
Pros
- They do not lose power, even after nearly ten years – the decrease in lifting capacity is only ~1% (theoretically),
- They possess excellent resistance to magnetism drop as a result of external fields,
- A magnet with a shiny nickel surface has an effective appearance,
- Magnets are characterized by huge magnetic induction on the outer layer,
- Neodymium magnets are characterized by extremely high magnetic induction on the magnet surface and can work (depending on the form) even at a temperature of 230°C or more...
- Thanks to freedom in designing and the ability to customize to client solutions,
- Key role in innovative solutions – they are utilized in magnetic memories, electric drive systems, diagnostic systems, also industrial machines.
- Compactness – despite small sizes they generate large force, making them ideal for precision applications
Limitations
- Brittleness is one of their disadvantages. Upon intense impact they can break. We recommend keeping them in a strong case, which not only secures them against impacts but also raises their durability
- Neodymium magnets lose their strength under the influence of heating. As soon as 80°C is exceeded, many of them start losing their power. Therefore, we recommend our special magnets marked [AH], which maintain stability even at temperatures up to 230°C
- They rust in a humid environment - during use outdoors we advise using waterproof magnets e.g. in rubber, plastic
- Limited possibility of making threads in the magnet and complicated shapes - recommended is cover - mounting mechanism.
- Possible danger to health – tiny shards of magnets pose a threat, if swallowed, which gains importance in the aspect of protecting the youngest. It is also worth noting that tiny parts of these magnets can disrupt the diagnostic process medical when they are in the body.
- Due to expensive raw materials, their price is relatively high,
Holding force characteristics
Maximum lifting capacity of the magnet – what it depends on?
- using a plate made of high-permeability steel, functioning as a magnetic yoke
- possessing a massiveness of minimum 10 mm to ensure full flux closure
- characterized by even structure
- with direct contact (no paint)
- for force applied at a right angle (in the magnet axis)
- at ambient temperature approx. 20 degrees Celsius
Magnet lifting force in use – key factors
- Gap between surfaces – even a fraction of a millimeter of separation (caused e.g. by varnish or unevenness) significantly weakens the magnet efficiency, often by half at just 0.5 mm.
- Loading method – catalog parameter refers to pulling vertically. When applying parallel force, the magnet exhibits significantly lower power (typically approx. 20-30% of nominal force).
- Wall thickness – the thinner the sheet, the weaker the hold. Part of the magnetic field passes through the material instead of generating force.
- Chemical composition of the base – mild steel gives the best results. Higher carbon content decrease magnetic properties and lifting capacity.
- Surface condition – ground elements ensure maximum contact, which improves force. Rough surfaces reduce efficiency.
- Thermal environment – temperature increase results in weakening of force. Check the maximum operating temperature for a given model.
Lifting capacity testing was conducted on plates with a smooth surface of optimal thickness, under perpendicular forces, in contrast under parallel forces the lifting capacity is smaller. Moreover, even a minimal clearance between the magnet’s surface and the plate lowers the load capacity.
Precautions when working with NdFeB magnets
Medical interference
People with a heart stimulator should keep an safe separation from magnets. The magnetism can stop the functioning of the implant.
Threat to navigation
Remember: rare earth magnets produce a field that confuses sensitive sensors. Keep a safe distance from your phone, tablet, and GPS.
Combustion hazard
Mechanical processing of neodymium magnets poses a fire hazard. Magnetic powder reacts violently with oxygen and is hard to extinguish.
Cards and drives
Intense magnetic fields can corrupt files on payment cards, hard drives, and storage devices. Stay away of min. 10 cm.
Do not underestimate power
Before use, read the rules. Uncontrolled attraction can break the magnet or hurt your hand. Think ahead.
Shattering risk
NdFeB magnets are sintered ceramics, which means they are very brittle. Impact of two magnets will cause them cracking into shards.
Thermal limits
Watch the temperature. Exposing the magnet to high heat will permanently weaken its magnetic structure and strength.
No play value
Adult use only. Tiny parts pose a choking risk, leading to severe trauma. Keep out of reach of kids and pets.
Allergy Warning
Nickel alert: The Ni-Cu-Ni coating contains nickel. If an allergic reaction occurs, immediately stop handling magnets and wear gloves.
Crushing force
Risk of injury: The pulling power is so great that it can result in hematomas, crushing, and even bone fractures. Use thick gloves.
