e-mail: bok@dhit.pl

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our proposal. All "neodymium magnets" on our website are in stock for immediate delivery (see the list). See the magnet pricing for more details check the magnet price list

Magnets for treasure hunters F200 GOLD

Where to buy very strong neodymium magnet? Magnetic holders in solid and airtight enclosure are excellent for use in challenging weather conditions, including in the rain and snow more information...

magnets with holders

Magnetic holders can be used to improve manufacturing, underwater exploration, or finding meteorites made of metal more information...

We promise to ship ordered magnets on the day of purchase before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product on order

MW 5x4 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010089

GTIN: 5906301810889

5

Diameter Ø [±0,1 mm]

5 mm

Height [±0,1 mm]

4 mm

Weight

0.59 g

Magnetization Direction

↑ axial

Load capacity

1.11 kg / 10.89 N

Magnetic Induction

524.45 mT

Coating

[NiCuNi] nickel

0.369 with VAT / pcs + price for transport

0.300 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.300 ZŁ
0.369 ZŁ
price from 4000 pcs
0.270 ZŁ
0.332 ZŁ
price from 8000 pcs
0.264 ZŁ
0.325 ZŁ

Looking for a better price?

Give us a call +48 888 99 98 98 if you prefer contact us using contact form the contact form page.
Weight along with appearance of neodymium magnets can be calculated on our magnetic calculator.

Orders placed before 14:00 will be shipped the same business day.

MW 5x4 / N38 - cylindrical magnet

Specification/characteristics MW 5x4 / N38 - cylindrical magnet
properties
values
Cat. no.
010089
GTIN
5906301810889
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
5 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
0.59 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
1.11 kg / 10.89 N
Magnetic Induction ~ ?
524.45 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets min. MW 5x4 / N38 are magnets created of neodymium in a cylindrical shape. They are valued for their extremely powerful magnetic properties, which exceed ordinary ferrite magnets. Because of their strength, they are frequently employed in devices that require strong adhesion. The standard temperature resistance of such magnets is 80 degrees C, but for cylindrical magnets, this temperature increases with their height. Moreover, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their resistance to corrosion. The shape of a cylinder is also one of the most popular among neodymium magnets. The magnet named MW 5x4 / N38 with a magnetic lifting capacity of 1.11 kg weighs only 0.59 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. Their production process requires a specialized approach and includes melting special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a coating of gold to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, and also in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth check the site for the latest information and offers, and before visiting, please call.
Due to their power, cylindrical neodymium magnets are very practical in various applications, they can also pose certain risk. Because of their strong magnetic power, they can pull metallic objects with uncontrolled force, which can lead to crushing skin or other materials, especially hands. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, thus they are coated with a thin e.g., nickel layer. In short, although they are handy, they should be handled with due caution.
Neodymium magnets, with the formula Nd2Fe14B, are presently the strong magnets on the market. They are produced through a complicated sintering process, which involves melting special alloys of neodymium with other metals and then shaping and heat treating. Their powerful magnetic strength comes from the exceptional production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often coated with thin coatings, such as silver, to preserve them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can cause a deterioration of their magnetic strength, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic strength.
A cylindrical magnet of class N52 and N50 is a strong and extremely powerful metallic component with the shape of a cylinder, that provides high force and versatile application. Attractive price, fast shipping, ruggedness and universal usability.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their immense pulling force, neodymium magnets offer the following advantages:

  • They virtually do not lose strength, because even after 10 years, the decline in efficiency is only ~1% (based on calculations),
  • They show exceptional resistance to demagnetization from external field exposure,
  • Thanks to the polished finish and silver coating, they have an elegant appearance,
  • The outer field strength of the magnet shows remarkable magnetic properties,
  • Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • With the option for tailored forming and personalized design, these magnets can be produced in numerous shapes and sizes, greatly improving application potential,
  • Significant impact in cutting-edge sectors – they serve a purpose in data storage devices, electric drives, diagnostic apparatus along with high-tech tools,
  • Thanks to their power density, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of magnetic elements:

  • They are prone to breaking when subjected to a strong impact. If the magnets are exposed to physical collisions, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage and increases its overall strength,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to wet conditions can rust. Therefore, for outdoor applications, we suggest waterproof types made of non-metallic composites,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing complex structures directly in the magnet,
  • Health risk related to magnet particles may arise, when consumed by mistake, which is significant in the protection of children. Additionally, tiny components from these assemblies have the potential to complicate medical imaging after being swallowed,
  • High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which may limit large-scale applications

Maximum holding power of the magnet – what it depends on?

The given pulling force of the magnet represents the maximum force, determined in the best circumstances, namely:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • in conditions of no clearance
  • in a perpendicular direction of force
  • at room temperature

Lifting capacity in real conditions – factors

The lifting capacity of a magnet is determined by in practice key elements, from primary to secondary:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was measured on the plate surface of 20 mm thickness, when the force acted perpendicularly, however under parallel forces the load capacity is reduced by as much as fivefold. Additionally, even a small distance {between} the magnet and the plate lowers the load capacity.

Precautions

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are the strongest magnets ever created, and their strength can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Do not bring neodymium magnets close to GPS and smartphones.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Magnets made of neodymium are characterized by being fragile, which can cause them to crumble.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

  Magnets are not toys, children should not play with them.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets can become demagnetized at high temperatures.

While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

Magnets attract each other within a distance of several to about 10 cm from each other. Remember not to insert fingers between magnets or alternatively in their path when they attract. Magnets, depending on their size, can even cut off a finger or there can be a severe pressure or a fracture.

Exercise caution!

So that know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous very powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98