UMS 60x18x8.5x15 / N38 - conical magnetic holder
conical magnetic holder
Catalog no 220404
GTIN: 5906301814238
Diameter Ø [±0,1 mm]
60 mm
cone dimension Ø [±0,1 mm]
18x8.5 mm
Height [±0,1 mm]
15 mm
Weight
250 g
Magnetization Direction
↑ axial
Load capacity
112 kg / 1098.34 N
Coating
[NiCuNi] nickel
62.78 ZŁ with VAT / pcs + price for transport
51.04 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Looking for a better price?
Call us
+48 888 99 98 98
otherwise contact us by means of
request form
through our site.
Parameters as well as structure of a magnet can be tested with our
magnetic mass calculator.
Same-day processing for orders placed before 14:00.
UMS 60x18x8.5x15 / N38 - conical magnetic holder
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their superior magnetism, neodymium magnets have these key benefits:
- They retain their full power for around 10 years – the loss is just ~1% (based on simulations),
- They remain magnetized despite exposure to magnetic noise,
- Because of the reflective layer of nickel, the component looks aesthetically refined,
- They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
- With the right combination of materials, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the design),
- The ability for precise shaping or adjustment to specific needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which enhances their versatility in applications,
- Key role in cutting-edge sectors – they serve a purpose in data storage devices, electric motors, diagnostic apparatus as well as sophisticated instruments,
- Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications
Disadvantages of rare earth magnets:
- They are prone to breaking when subjected to a strong impact. If the magnets are exposed to physical collisions, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture while also reinforces its overall resistance,
- They lose power at increased temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a damp environment. If exposed to rain, we recommend using encapsulated magnets, such as those made of plastic,
- Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing complex structures directly in the magnet,
- Possible threat linked to microscopic shards may arise, if ingested accidentally, which is significant in the context of child safety. Moreover, miniature parts from these devices have the potential to complicate medical imaging if inside the body,
- Due to a complex production process, their cost is above average,
Best holding force of the magnet in ideal parameters – what contributes to it?
The given pulling force of the magnet means the maximum force, determined in ideal conditions, that is:
- with mild steel, serving as a magnetic flux conductor
- of a thickness of at least 10 mm
- with a refined outer layer
- with no separation
- with vertical force applied
- at room temperature
Magnet lifting force in use – key factors
The lifting capacity of a magnet depends on in practice key elements, according to their importance:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was conducted on plates with a smooth surface of suitable thickness, under a perpendicular pulling force, however under attempts to slide the magnet the holding force is lower. Moreover, even a slight gap {between} the magnet’s surface and the plate reduces the holding force.
Caution with Neodymium Magnets
Neodymium magnetic are delicate and can easily crack and get damaged.
Neodymium magnets are characterized by considerable fragility. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
The magnet is coated with nickel - be careful if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can surprise you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.
Do not give neodymium magnets to children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
If have a finger between or on the path of attracting magnets, there may be a serious cut or even a fracture.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Safety precautions!
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.