BM 380x180x70 [4x M8] - magnetic beam
magnetic beam
Catalog no 090218
GTIN: 5906301812531
length [±0,1 mm]
380 mm
Width [±0,1 mm]
180 mm
Height [±0,1 mm]
70 mm
Weight
24400 g
4185.08 ZŁ with VAT / pcs + price for transport
3402.50 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Looking for a better price?
Contact us by phone
+48 888 99 98 98
or let us know by means of
inquiry form
the contact page.
Strength and form of magnetic components can be tested using our
online calculation tool.
Same-day shipping for orders placed before 14:00.
BM 380x180x70 [4x M8] - magnetic beam
Magnetic properties of material
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their notable holding force, neodymium magnets have these key benefits:
- Their power remains stable, and after approximately 10 years, it drops only by ~1% (theoretically),
- Their ability to resist magnetic interference from external fields is impressive,
- The use of a polished silver surface provides a eye-catching finish,
- They possess intense magnetic force measurable at the magnet’s surface,
- These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to build),
- Thanks to the possibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in diverse shapes and sizes, which expands their application range,
- Wide application in cutting-edge sectors – they are utilized in HDDs, electric drives, diagnostic apparatus along with high-tech tools,
- Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in compact dimensions, which makes them ideal in miniature devices
Disadvantages of rare earth magnets:
- They can break when subjected to a powerful impact. If the magnets are exposed to physical collisions, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage and additionally enhances its overall resistance,
- High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of rubber for outdoor use,
- Limited ability to create internal holes in the magnet – the use of a mechanical support is recommended,
- Safety concern linked to microscopic shards may arise, if ingested accidentally, which is notable in the context of child safety. Additionally, tiny components from these magnets can complicate medical imaging if inside the body,
- In cases of large-volume purchasing, neodymium magnet cost may not be economically viable,
Breakaway strength of the magnet in ideal conditions – what contributes to it?
The given lifting capacity of the magnet corresponds to the maximum lifting force, measured in the best circumstances, specifically:
- with mild steel, used as a magnetic flux conductor
- of a thickness of at least 10 mm
- with a refined outer layer
- in conditions of no clearance
- under perpendicular detachment force
- at room temperature
Determinants of lifting force in real conditions
In practice, the holding capacity of a magnet is affected by these factors, from crucial to less important:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was carried out on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, in contrast under shearing force the holding force is lower. Moreover, even a slight gap {between} the magnet’s surface and the plate lowers the load capacity.
Exercise Caution with Neodymium Magnets
Neodymium magnets are fragile and can easily break as well as get damaged.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Neodymium magnets can demagnetize at high temperatures.
While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Neodymium magnets generate intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Neodymium magnets are the strongest, most remarkable magnets on earth, and the surprising force between them can shock you at first.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.
Keep neodymium magnets away from people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Keep neodymium magnets far from children.
Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
Magnets will jump and touch together within a radius of several to around 10 cm from each other.
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Safety precautions!
In order for you to know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous very powerful neodymium magnets.
