e-mail: bok@dhit.pl

neodymium magnets

We provide red color magnetic Nd2Fe14B - our proposal. All magnesy on our website are in stock for immediate delivery (check the list). See the magnet price list for more details see the magnet price list

Magnet for treasure hunters F400 GOLD

Where to purchase powerful neodymium magnet? Holders with magnets in airtight, solid enclosure are ideally suited for use in challenging weather conditions, including during snow and rain see more...

magnets with holders

Holders with magnets can be used to enhance manufacturing, underwater discoveries, or searching for meteorites from gold check...

We promise to ship your order on the day of purchase by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

BM 380x180x70 [4x M8] - magnetic beam

magnetic beam

Catalog no 090218

GTIN: 5906301812531

5

length [±0,1 mm]

380 mm

Width [±0,1 mm]

180 mm

Height [±0,1 mm]

70 mm

Weight

24400 g

4 185.08 with VAT / pcs + price for transport

3 402.50 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
3 402.50 ZŁ
4 185.07 ZŁ
price from 2 pcs
3 300.43 ZŁ
4 059.52 ZŁ
price from 4 pcs
3 198.35 ZŁ
3 933.97 ZŁ

Need advice?

Pick up the phone and ask +48 22 499 98 98 or let us know through request form our website.
Lifting power as well as structure of magnets can be checked on our force calculator.

Same-day shipping for orders placed before 14:00.

BM 380x180x70 [4x M8] - magnetic beam

Specification/characteristics BM 380x180x70 [4x M8] - magnetic beam
properties
values
Cat. no.
090218
GTIN
5906301812531
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
380 mm [±0,1 mm]
Width
180 mm [±0,1 mm]
Height
70 mm [±0,1 mm]
Weight
24400 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material

properties
values
units

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Magnetic beams are components mounted above conveyor systems, which use neodymium magnets to separate iron contaminants from the transported material. Any metal parts are attracted to the underside of the beam. The use of such beams is particularly common in the food industry, plastic processing and many other industries.
The selection of the magnetic beam depends on the width of the conveyor and the cross-section of the beam. A larger cross-section allows the beam to be suspended higher above the belt. For instance, for loose materials with a depth of 2-3 cm, a beam with a cross-section of 80x40 mm will suffice, while for a layer of material over 8 cm, a larger beam is required. We also manufacture magnetic beams made to order according to customer requirements.
The magnetic beam works due to the use of neodymium magnets, which generate a magnetic field attracting metal elements. This causes all metals in the transport to be captured and stopped. Mounted at the right angle, it can function as a chute separator. Thanks to its sealed housing made of stainless steel, the device is durable and reliable in harsh industrial conditions.
These devices are used for removing any iron contaminants, such as metal balls, bolts and nuts, metal items, such as nails or keys. The range of the beam's action depends on its magnetic parameters and cross-section. Thanks to this, magnetic beams are effective in metal separation in industries such as recycling, food processing, and plastic processing.
Magnetic beams are indispensable in industry due to their effectiveness in metal separation, especially in industrial sectors requiring precise contaminant separation. Equipped with neodymium magnets, these beams ensure high reliability and work efficiency. Additionally, the ability to customize the beam parameters to meet the specific requirements of the customer makes them a versatile solution for many industrial sectors.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their magnetic efficiency, neodymium magnets provide the following advantages:

  • They virtually do not lose power, because even after 10 years, the decline in efficiency is only ~1% (based on calculations),
  • They remain magnetized despite exposure to magnetic noise,
  • In other words, due to the glossy nickel coating, the magnet obtains an stylish appearance,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • The ability for precise shaping or adjustment to custom needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which amplifies their functionality across industries,
  • Wide application in cutting-edge sectors – they serve a purpose in data storage devices, electric drives, clinical machines along with sophisticated instruments,
  • Thanks to their power density, small magnets offer high magnetic performance, in miniature format,

Disadvantages of rare earth magnets:

  • They are fragile when subjected to a heavy impact. If the magnets are exposed to shocks, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage while also strengthens its overall strength,
  • Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to moisture can rust. Therefore, for outdoor applications, we advise waterproof types made of plastic,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing fine shapes directly in the magnet,
  • Potential hazard linked to microscopic shards may arise, especially if swallowed, which is significant in the protection of children. Furthermore, tiny components from these assemblies may interfere with diagnostics once in the system,
  • Due to the price of neodymium, their cost is relatively high,

Be Cautious with Neodymium Magnets

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

  Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Neodymium magnets jump and clash mutually within a distance of several to almost 10 cm from each other.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Magnets made of neodymium are incredibly delicate, they easily crack as well as can become damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

Pay attention!

So that know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98