tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our proposal. Practically all "neodymium magnets" on our website are in stock for immediate purchase (see the list). Check out the magnet pricing for more details see the magnet price list

Magnets for searching F400 GOLD

Where to buy powerful neodymium magnet? Magnet holders in airtight and durable enclosure are perfect for use in difficult, demanding weather conditions, including during rain and snow read...

magnets with holders

Holders with magnets can be applied to improve manufacturing, exploring underwater areas, or searching for meteorites made of ore more...

Order always shipped on the same day by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

BM 380x180x70 [4x M8] - magnetic beam

magnetic beam

Catalog no 090218

GTIN: 5906301812531

5

length [±0,1 mm]

380 mm

Width [±0,1 mm]

180 mm

Height [±0,1 mm]

70 mm

Weight

24400 g

4185.08 with VAT / pcs + price for transport

3402.50 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
3402.50 ZŁ
4185.08 ZŁ
price from 5 pcs
3198.35 ZŁ
3933.97 ZŁ

Looking for a better price?

Give us a call +48 22 499 98 98 or send us a note by means of our online form the contact page.
Specifications and appearance of neodymium magnets can be reviewed using our magnetic mass calculator.

Order by 14:00 and we’ll ship today!

BM 380x180x70 [4x M8] - magnetic beam

Specification/characteristics BM 380x180x70 [4x M8] - magnetic beam
properties
values
Cat. no.
090218
GTIN
5906301812531
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
380 mm [±0,1 mm]
Width
180 mm [±0,1 mm]
Height
70 mm [±0,1 mm]
Weight
24400 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material

properties
values
units

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Magnetic beams are components mounted above conveyor systems, which are based on strong neodymium magnets to capture unwanted iron elements. Metallic elements float up and attach to the bottom surface of the beam. The use of such beams is particularly common in the food industry, plastic processing and other industrial sectors.
The selection of the magnetic beam depends on the width of the conveyor and the cross-section of the beam. The larger the cross-section of the beam, the greater the magnetic field range. For example, for loose materials with a depth of 2-3 cm, a beam with a cross-section of 80x40 mm will suffice, while for a layer of material over 8 cm, a larger beam is required. Custom-sized beams are available upon request.
The magnetic beam works due to the use of neodymium magnets, which generate a magnetic field attracting metal elements. Metal objects are lifted and attach to the underside of the beam. The beam can be mounted above the conveyor or set at an angle as a chute separator. The stainless steel housing protects the magnets, the device is durable and reliable in harsh industrial conditions.
Magnetic beams effectively capture iron elements, such as balls with a diameter of 5-10 mm, M5-M10 nuts, metal items, such as nails or keys. The range of the beam's action depends on its magnetic parameters and cross-section. These devices are indispensable in many industrial sectors where removing iron contaminants is critical.
Magnetic beams are indispensable in industry due to their effectiveness in metal separation, especially in industrial sectors requiring precise contaminant separation. Equipped with neodymium magnets, these beams guarantee effectiveness in challenging industrial conditions. Moreover, the ability to customize the beam parameters to meet the specific requirements of the customer makes them a versatile solution for many industrial sectors.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their notable magnetic energy, neodymium magnets have these key benefits:

  • They virtually do not lose strength, because even after 10 years, the decline in efficiency is only ~1% (according to literature),
  • Their ability to resist magnetic interference from external fields is among the best,
  • The use of a mirror-like nickel surface provides a eye-catching finish,
  • They possess intense magnetic force measurable at the magnet’s surface,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
  • Thanks to the freedom in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in various configurations, which increases their usage potential,
  • Key role in modern technologies – they are utilized in data storage devices, rotating machines, healthcare devices along with other advanced devices,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of magnetic elements:

  • They may fracture when subjected to a strong impact. If the magnets are exposed to physical collisions, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from damage and strengthens its overall durability,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to moisture can oxidize. Therefore, for outdoor applications, we advise waterproof types made of rubber,
  • The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is not feasible,
  • Health risk linked to microscopic shards may arise, in case of ingestion, which is important in the protection of children. Moreover, tiny components from these products might interfere with diagnostics once in the system,
  • Due to the price of neodymium, their cost is relatively high,

Best holding force of the magnet in ideal parameterswhat contributes to it?

The given lifting capacity of the magnet represents the maximum lifting force, determined in the best circumstances, that is:

  • with mild steel, serving as a magnetic flux conductor
  • having a thickness of no less than 10 millimeters
  • with a polished side
  • with no separation
  • in a perpendicular direction of force
  • at room temperature

Practical aspects of lifting capacity – factors

In practice, the holding capacity of a magnet is conditioned by the following aspects, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on the plate surface of 20 mm thickness, when a perpendicular force was applied, however under attempts to slide the magnet the load capacity is reduced by as much as 5 times. Moreover, even a minimal clearance {between} the magnet and the plate reduces the holding force.

Be Cautious with Neodymium Magnets

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

  Do not give neodymium magnets to youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets will attract each other within a distance of several to around 10 cm from each other. Remember not to place fingers between magnets or alternatively in their path when they attract. Depending on how massive the neodymium magnets are, they can lead to a cut or a fracture.

Neodymium magnetic are characterized by their fragility, which can cause them to shatter.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Safety rules!

To raise awareness of why neodymium magnets are so dangerous, see the article titled How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98