HH 32x7.8 [M5] / N38 - through hole magnetic holder
through hole magnetic holder
Catalog no 370483
GTIN: 5906301814931
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
7.8 mm
Weight
37.8 g
Magnetization Direction
↑ axial
Load capacity
27 kg / 264.78 N
Coating
[NiCuNi] nickel
17.96 ZŁ with VAT / pcs + price for transport
14.60 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to talk magnets?
Call us now
+48 888 99 98 98
if you prefer drop us a message via
our online form
through our site.
Strength along with structure of magnetic components can be tested using our
magnetic calculator.
Order by 14:00 and we’ll ship today!
HH 32x7.8 [M5] / N38 - through hole magnetic holder
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their pulling strength, neodymium magnets provide the following advantages:
- They have constant strength, and over nearly 10 years their performance decreases symbolically – ~1% (according to theory),
- They show strong resistance to demagnetization from outside magnetic sources,
- Thanks to the polished finish and silver coating, they have an aesthetic appearance,
- They have very high magnetic induction on the surface of the magnet,
- With the right combination of magnetic alloys, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the form),
- Thanks to the possibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in various configurations, which broadens their usage potential,
- Wide application in cutting-edge sectors – they find application in HDDs, rotating machines, medical equipment as well as technologically developed systems,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of magnetic elements:
- They can break when subjected to a sudden impact. If the magnets are exposed to external force, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks while also strengthens its overall durability,
- They lose strength at high temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a wet environment, especially when used outside, we recommend using encapsulated magnets, such as those made of polymer,
- Limited ability to create threads in the magnet – the use of a magnetic holder is recommended,
- Possible threat related to magnet particles may arise, in case of ingestion, which is important in the health of young users. Additionally, tiny components from these assemblies have the potential to interfere with diagnostics once in the system,
- High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications
Detachment force of the magnet in optimal conditions – what contributes to it?
The given strength of the magnet means the optimal strength, assessed in ideal conditions, namely:
- with the use of low-carbon steel plate acting as a magnetic yoke
- having a thickness of no less than 10 millimeters
- with a refined outer layer
- with zero air gap
- under perpendicular detachment force
- under standard ambient temperature
Practical lifting capacity: influencing factors
The lifting capacity of a magnet is influenced by in practice key elements, from primary to secondary:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed with the use of a smooth steel plate of optimal thickness (min. 20 mm), under perpendicular detachment force, however under shearing force the lifting capacity is smaller. In addition, even a minimal clearance {between} the magnet and the plate decreases the load capacity.
Exercise Caution with Neodymium Magnets
Magnets made of neodymium are noted for their fragility, which can cause them to shatter.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are not recommended for people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Never bring neodymium magnets close to a phone and GPS.
Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.
Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
Neodymium magnets jump and also clash mutually within a distance of several to almost 10 cm from each other.
Neodymium magnets are among the strongest magnets on Earth. The surprising force they generate between each other can surprise you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Caution!
To illustrate why neodymium magnets are so dangerous, see the article - How very dangerous are very strong neodymium magnets?.
