HH 32x7.8 [M5] / N38 - through hole magnetic holder
through hole magnetic holder
Catalog no 370483
GTIN: 5906301814931
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
7.8 mm
Weight
37.8 g
Magnetization Direction
↑ axial
Load capacity
27 kg / 264.78 N
Coating
[NiCuNi] nickel
17.96 ZŁ with VAT / pcs + price for transport
14.60 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Can't decide what to choose?
Contact us by phone
+48 888 99 98 98
otherwise contact us using
request form
the contact section.
Strength along with structure of a magnet can be estimated using our
force calculator.
Order by 14:00 and we’ll ship today!
HH 32x7.8 [M5] / N38 - through hole magnetic holder
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their remarkable pulling force, neodymium magnets offer the following advantages:
- They have unchanged lifting capacity, and over around 10 years their performance decreases symbolically – ~1% (in testing),
- They protect against demagnetization induced by ambient magnetic fields remarkably well,
- The use of a mirror-like silver surface provides a eye-catching finish,
- The outer field strength of the magnet shows elevated magnetic properties,
- Thanks to their high temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
- With the option for tailored forming and targeted design, these magnets can be produced in multiple shapes and sizes, greatly improving engineering flexibility,
- Wide application in cutting-edge sectors – they find application in data storage devices, electric drives, medical equipment as well as technologically developed systems,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, with minimal size,
Disadvantages of NdFeB magnets:
- They can break when subjected to a powerful impact. If the magnets are exposed to physical collisions, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage and strengthens its overall durability,
- High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Due to corrosion risk in humid conditions, it is common to use sealed magnets made of rubber for outdoor use,
- Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing threads directly in the magnet,
- Possible threat related to magnet particles may arise, especially if swallowed, which is crucial in the context of child safety. Furthermore, miniature parts from these assemblies may hinder health screening when ingested,
- Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications
Detachment force of the magnet in optimal conditions – what it depends on?
The given holding capacity of the magnet means the highest holding force, assessed in ideal conditions, that is:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- having a thickness of no less than 10 millimeters
- with a polished side
- with zero air gap
- in a perpendicular direction of force
- at room temperature
Lifting capacity in real conditions – factors
In practice, the holding capacity of a magnet is conditioned by the following aspects, arranged from the most important to the least relevant:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was carried out on plates with a smooth surface of optimal thickness, under perpendicular forces, in contrast under shearing force the holding force is lower. Moreover, even a minimal clearance {between} the magnet’s surface and the plate lowers the holding force.
Handle with Care: Neodymium Magnets
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can shock you at first.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Neodymium magnets can demagnetize at high temperatures.
Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
Magnets will attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a serious injury may occur. Magnets, depending on their size, are able even cut off a finger or there can be a severe pressure or even a fracture.
Do not give neodymium magnets to children.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.
Neodymium magnetic are delicate as well as can easily break and get damaged.
Neodymium magnetic are extremely delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
The magnet is coated with nickel - be careful if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Keep neodymium magnets away from people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Caution!
In order to illustrate why neodymium magnets are so dangerous, see the article - How dangerous are very powerful neodymium magnets?.