e-mail: bok@dhit.pl

neodymium magnets

We provide red color magnetic Nd2Fe14B - our proposal. Practically all magnesy in our store are in stock for immediate delivery (check the list). See the magnet price list for more details see the magnet price list

Magnets for water searching F200 GOLD

Where to buy strong magnet? Magnetic holders in airtight, solid enclosure are perfect for use in challenging weather conditions, including during rain and snow check...

magnetic holders

Holders with magnets can be applied to facilitate manufacturing, underwater discoveries, or searching for space rocks made of ore see more...

Enjoy shipping of your order if the order is placed by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

HH 32x7.8 [M5] / N38 - through hole magnetic holder

through hole magnetic holder

Catalog no 370483

GTIN: 5906301814931

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

7.8 mm

Weight

37.8 g

Magnetization Direction

↑ axial

Load capacity

27 kg / 264.78 N

Coating

[NiCuNi] nickel

17.96 with VAT / pcs + price for transport

14.60 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
14.60 ZŁ
17.96 ZŁ
price from 50 pcs
13.72 ZŁ
16.88 ZŁ
price from 110 pcs
12.85 ZŁ
15.80 ZŁ

Want to talk magnets?

Contact us by phone +48 888 99 98 98 otherwise let us know through request form our website.
Specifications and structure of neodymium magnets can be calculated on our force calculator.

Orders placed before 14:00 will be shipped the same business day.

HH 32x7.8 [M5] / N38 - through hole magnetic holder

Specification/characteristics HH 32x7.8 [M5] / N38 - through hole magnetic holder
properties
values
Cat. no.
370483
GTIN
5906301814931
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
7.8 mm [±0,1 mm]
Weight
37.8 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
27 kg / 264.78 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their exceptional magnetic power, neodymium magnets offer the following advantages:

  • They have unchanged lifting capacity, and over more than 10 years their attraction force decreases symbolically – ~1% (according to theory),
  • They remain magnetized despite exposure to magnetic surroundings,
  • Thanks to the shiny finish and gold coating, they have an aesthetic appearance,
  • Magnetic induction on the surface of these magnets is very strong,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for tailored forming and precise design, these magnets can be produced in various shapes and sizes, greatly improving engineering flexibility,
  • Important function in cutting-edge sectors – they are used in computer drives, electric motors, medical equipment or even technologically developed systems,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to shocks, we recommend in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and reinforces its overall strength,
  • High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a humid environment – during outdoor use, we recommend using encapsulated magnets, such as those made of non-metallic materials,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is restricted,
  • Potential hazard from tiny pieces may arise, if ingested accidentally, which is important in the family environments. It should also be noted that small elements from these assemblies may interfere with diagnostics if inside the body,
  • In cases of large-volume purchasing, neodymium magnet cost is a challenge,

Magnetic strength at its maximum – what affects it?

The given lifting capacity of the magnet means the maximum lifting force, determined in the best circumstances, namely:

  • with mild steel, used as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a smooth surface
  • with zero air gap
  • with vertical force applied
  • in normal thermal conditions

Determinants of lifting force in real conditions

In practice, the holding capacity of a magnet is affected by these factors, in descending order of importance:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was measured on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, however under attempts to slide the magnet the holding force is lower. Additionally, even a minimal clearance {between} the magnet and the plate lowers the lifting capacity.

Handle with Care: Neodymium Magnets

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets generate strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Neodymium magnets are particularly delicate, resulting in their breakage.

Neodymium magnets are highly fragile, and by joining them in an uncontrolled manner, they will crumble. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets will crack or alternatively crumble with uncontrolled connecting to each other. Remember not to approach them to each other or hold them firmly in hands at a distance less than 10 cm.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets can become demagnetized at high temperatures.

Despite the fact that magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Pay attention!

To show why neodymium magnets are so dangerous, read the article - How very dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98