tel: +48 22 499 98 98

neodymium magnets

We provide red color magnets Nd2Fe14B - our offer. Practically all "neodymium magnets" in our store are in stock for immediate purchase (see the list). Check out the magnet pricing for more details check the magnet price list

Magnets for searching F200 GOLD

Where to buy powerful neodymium magnet? Magnet holders in solid and airtight steel enclosure are excellent for use in difficult, demanding weather, including snow and rain more...

magnets with holders

Holders with magnets can be used to enhance production, underwater exploration, or locating meteorites made of metal more information...

We promise to ship your order if the order is placed before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x425 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130380

GTIN: 5906301813286

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

425 mm

Weight

2280 g

1266.90 with VAT / pcs + price for transport

1030.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1030.00 ZŁ
1266.90 ZŁ
price from 5 pcs
927.00 ZŁ
1140.21 ZŁ

Do you have a dilemma?

Contact us by phone +48 888 99 98 98 or let us know by means of our online form the contact section.
Lifting power and form of neodymium magnets can be verified on our force calculator.

Same-day processing for orders placed before 14:00.

SM 32x425 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 32x425 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130380
GTIN
5906301813286
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
425 mm [±0,1 mm]
Weight
2280 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the force of neodymium magnets, placed in a casing made of stainless steel mostly AISI304. As a result, it is possible to precisely separate ferromagnetic particles from different substances. A fundamental component of its operation is the use of repulsion of N and S poles of neodymium magnets, which enables magnetic substances to be attracted. The thickness of the embedded magnet and its structure's pitch affect the power and range of the separator's operation.
Generally speaking, magnetic separators serve to separate ferromagnetic particles. If the cans are made of ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers are employed in the food sector for the elimination of metallic contaminants, such as iron fragments or iron dust. Our rollers are made from acid-resistant steel, EN 1.4301, approved for contact with food.
Magnetic rollers, often called cylindrical magnets, are employed in metal separation, food production as well as recycling. They help in eliminating iron dust during the process of separating metals from other wastes.
Our magnetic rollers consist of a neodymium magnet placed in a stainless steel tube cylinder made of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar will be with M8 threaded holes - 18 mm, which enables quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars differ in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in two materials, N42 and N52.
Usually it is believed that the greater the magnet's power, the more efficient it is. However, the value of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
In the case where the magnet is thin, the magnetic force lines are short. By contrast, in the case of a thicker magnet, the force lines will be longer and reach further.
For creating the casings of magnetic separators - rollers, usually stainless steel is employed, particularly types AISI 304, AISI 316, and AISI 316L.
In a salt water contact, AISI 316 steel exhibits the best resistance thanks to its excellent anti-corrosion properties.
Magnetic rollers stand out for their unique configuration of poles and their ability to attract magnetic substances directly onto their surface, in contrast to other devices that may utilize complex filtration systems.
Technical designations and terms pertaining to magnetic separators include among others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The result is verified in a value table - the lowest is N30. All designations less than N27 or N25 indicate recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic rollers offer many advantages, including higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. However, some of the downsides may involve the need for regular cleaning, higher cost, and potential installation challenges.
By ensuring proper maintenance of neodymium magnetic rollers, it’s worth cleaning after each use, avoiding temperatures up to 80°C. The rollers feature waterproofing IP67, so if they are not sealed, the magnets inside can rust and weaken. Magnetic field measurements should be carried out every two years. Caution should be taken during use, as it’s possible of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, which are used to remove metal contaminants from bulk and granular materials. They are applied in industries such as food processing, ceramics, and recycling, where metal separation is crucial.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their remarkable pulling force, neodymium magnets offer the following advantages:

  • They retain their magnetic properties for almost ten years – the loss is just ~1% (in theory),
  • They protect against demagnetization induced by surrounding electromagnetic environments very well,
  • Thanks to the glossy finish and gold coating, they have an visually attractive appearance,
  • They possess significant magnetic force measurable at the magnet’s surface,
  • Thanks to their enhanced temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
  • Thanks to the freedom in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in diverse shapes and sizes, which expands their functional possibilities,
  • Wide application in advanced technical fields – they are utilized in HDDs, electromechanical systems, clinical machines as well as high-tech tools,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to external force, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time strengthens its overall strength,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of protective material for outdoor use,
  • Limited ability to create precision features in the magnet – the use of a magnetic holder is recommended,
  • Health risk due to small fragments may arise, especially if swallowed, which is notable in the health of young users. Furthermore, minuscule fragments from these assemblies have the potential to hinder health screening after being swallowed,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Maximum lifting capacity of the magnetwhat contributes to it?

The given strength of the magnet corresponds to the optimal strength, determined in ideal conditions, that is:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a polished side
  • with no separation
  • with vertical force applied
  • at room temperature

Determinants of lifting force in real conditions

In practice, the holding capacity of a magnet is affected by the following aspects, in descending order of importance:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was measured on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, whereas under parallel forces the load capacity is reduced by as much as fivefold. Additionally, even a small distance {between} the magnet and the plate reduces the holding force.

Exercise Caution with Neodymium Magnets

Neodymium magnetic are highly susceptible to damage, resulting in shattering.

Neodymium magnets are fragile as well as will break if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets can demagnetize at high temperatures.

Under specific conditions, Neodymium magnets may experience demagnetization when subjected to high temperatures.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

  Neodymium magnets should not be in the vicinity children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Keep neodymium magnets away from the wallet, computer, and TV.

Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

If you have a finger between or on the path of attracting magnets, there may be a large cut or a fracture.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Be careful!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98