SM 32x425 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130380
GTIN: 5906301813286
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
425 mm
Weight
2280 g
1266.90 ZŁ with VAT / pcs + price for transport
1030.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to negotiate?
Give us a call
+48 888 99 98 98
or get in touch using
contact form
the contact page.
Lifting power and shape of magnets can be reviewed on our
magnetic calculator.
Orders placed before 14:00 will be shipped the same business day.
SM 32x425 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their magnetic efficiency, neodymium magnets provide the following advantages:
- They do not lose their even during nearly 10 years – the loss of power is only ~1% (theoretically),
- They protect against demagnetization induced by surrounding magnetic fields very well,
- Because of the reflective layer of gold, the component looks high-end,
- The outer field strength of the magnet shows elevated magnetic properties,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- With the option for tailored forming and targeted design, these magnets can be produced in multiple shapes and sizes, greatly improving application potential,
- Wide application in cutting-edge sectors – they find application in HDDs, electric motors, diagnostic apparatus and high-tech tools,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, with minimal size,
Disadvantages of NdFeB magnets:
- They can break when subjected to a powerful impact. If the magnets are exposed to physical collisions, we recommend in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time reinforces its overall robustness,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to damp air can oxidize. Therefore, for outdoor applications, it's best to use waterproof types made of plastic,
- Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing fine shapes directly in the magnet,
- Possible threat related to magnet particles may arise, especially if swallowed, which is significant in the context of child safety. Additionally, miniature parts from these devices can hinder health screening when ingested,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Breakaway strength of the magnet in ideal conditions – what affects it?
The given lifting capacity of the magnet represents the maximum lifting force, measured under optimal conditions, that is:
- with mild steel, serving as a magnetic flux conductor
- having a thickness of no less than 10 millimeters
- with a refined outer layer
- with zero air gap
- under perpendicular detachment force
- in normal thermal conditions
Lifting capacity in real conditions – factors
Practical lifting force is determined by factors, listed from the most critical to the less significant:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was tested on the plate surface of 20 mm thickness, when the force acted perpendicularly, however under shearing force the lifting capacity is smaller. Additionally, even a minimal clearance {between} the magnet and the plate decreases the load capacity.
Handle Neodymium Magnets with Caution
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can shock you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
Neodymium magnets will bounce and contact together within a radius of several to almost 10 cm from each other.
Avoid bringing neodymium magnets close to a phone or GPS.
Neodymium magnets generate strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.
Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Keep neodymium magnets away from TV, wallet, and computer HDD.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Magnets made of neodymium are especially delicate, which leads to their breakage.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Neodymium magnets are not recommended for people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Neodymium magnets can demagnetize at high temperatures.
In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.
Pay attention!
So you are aware of why neodymium magnets are so dangerous, see the article titled How very dangerous are powerful neodymium magnets?.
