e-mail: bok@dhit.pl

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our proposal. Practically all magnesy neodymowe on our website are in stock for immediate purchase (check the list). Check out the magnet price list for more details see the magnet price list

Magnet for water searching F200 GOLD

Where to buy very strong magnet? Magnet holders in airtight and durable enclosure are ideally suited for use in difficult, demanding weather conditions, including during rain and snow more information...

magnetic holders

Magnetic holders can be applied to enhance manufacturing, underwater discoveries, or locating meteors from gold more information...

Enjoy shipping of your order if the order is placed by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x425 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130380

GTIN: 5906301813286

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

425 mm

Weight

2280 g

1266.90 with VAT / pcs + price for transport

1030.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1030.00 ZŁ
1266.90 ZŁ
price from 5 pcs
927.00 ZŁ
1140.21 ZŁ

Hunting for a discount?

Pick up the phone and ask +48 888 99 98 98 if you prefer get in touch using inquiry form our website.
Specifications as well as structure of neodymium magnets can be checked with our our magnetic calculator.

Orders placed before 14:00 will be shipped the same business day.

SM 32x425 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 32x425 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130380
GTIN
5906301813286
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
425 mm [±0,1 mm]
Weight
2280 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the power of neodymium magnets, placed in a casing made of stainless steel usually AISI304. As a result, it is possible to precisely segregate ferromagnetic elements from other materials. A key aspect of its operation is the use of repulsion of magnetic poles N and S, which causes magnetic substances to be collected. The thickness of the magnet and its structure pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators serve to extract ferromagnetic elements. If the cans are made from ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers are used in food production for the elimination of metallic contaminants, including iron fragments or iron dust. Our rollers are built from acid-resistant steel, EN 1.4301, approved for use in food.
Magnetic rollers, otherwise cylindrical magnets, are employed in food production, metal separation as well as recycling. They help in extracting iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers consist of a neodymium magnet embedded in a stainless steel tube cylinder made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded openings, allowing for easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars differ in terms of magnetic force lines, flux density and the field of the magnetic field. We produce them in materials, N42 and N52.
Often it is believed that the stronger the magnet, the more efficient it is. However, the strength of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is thin, the magnetic force lines will be short. By contrast, when the magnet is thick, the force lines will be longer and reach further.
For making the casings of magnetic separators - rollers, usually stainless steel is used, particularly types AISI 304, AISI 316, and AISI 316L.
In a salt water contact, type AISI 316 steel exhibits the best resistance thanks to its exceptional corrosion resistance.
Magnetic rollers are characterized by their specific arrangement of poles and their capability to attract magnetic substances directly onto their surface, in contrast to other separators that may utilize more complicated filtration systems.
Technical designations and terms pertaining to magnetic separators comprise amongst others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a magnet on a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value near the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations below N27 or N25 suggest recycling that falls below the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. Disadvantages may include higher cost compared to other types of magnets and the need for regular maintenance.
For proper maintenance of neodymium magnetic rollers, it’s worth regularly cleaning them from contaminants, avoiding extreme temperatures up to 80°C, and protecting them from moisture if the threads are not sealed – in ours, they are. The rollers feature waterproofing IP67, so if they are leaky, the magnets inside can oxidize and weaken. Testing of the rollers should be carried out once every 24 months. Care should be taken, as there is a risk getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The effective range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where the removal of iron metals and iron filings is essential.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their tremendous pulling force, neodymium magnets offer the following advantages:

  • They retain their full power for almost ten years – the drop is just ~1% (according to analyses),
  • They remain magnetized despite exposure to magnetic noise,
  • In other words, due to the shiny nickel coating, the magnet obtains an professional appearance,
  • The outer field strength of the magnet shows advanced magnetic properties,
  • With the right combination of compounds, they reach increased thermal stability, enabling operation at or above 230°C (depending on the design),
  • The ability for precise shaping or customization to specific needs – neodymium magnets can be manufactured in many forms and dimensions, which extends the scope of their use cases,
  • Key role in modern technologies – they serve a purpose in HDDs, electric drives, diagnostic apparatus and high-tech tools,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, in miniature format,

Disadvantages of magnetic elements:

  • They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to shocks, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage and additionally reinforces its overall robustness,
  • Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to wet conditions can corrode. Therefore, for outdoor applications, we recommend waterproof types made of coated materials,
  • Limited ability to create complex details in the magnet – the use of a magnetic holder is recommended,
  • Potential hazard due to small fragments may arise, especially if swallowed, which is important in the health of young users. Moreover, tiny components from these devices have the potential to disrupt scanning when ingested,
  • Due to the price of neodymium, their cost is considerably higher,

Optimal lifting capacity of a neodymium magnetwhat affects it?

The given lifting capacity of the magnet means the maximum lifting force, calculated in a perfect environment, namely:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with no separation
  • in a perpendicular direction of force
  • in normal thermal conditions

Key elements affecting lifting force

Practical lifting force is determined by elements, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed by applying a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, in contrast under attempts to slide the magnet the lifting capacity is smaller. Additionally, even a minimal clearance {between} the magnet’s surface and the plate lowers the holding force.

Handle Neodymium Magnets Carefully

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets are among the strongest magnets on Earth. The surprising force they generate between each other can shock you.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Neodymium magnetic are fragile and can easily break and get damaged.

Magnets made of neodymium are delicate as well as will break if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets should not be near people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can demagnetize at high temperatures.

Whilst Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

If the joining of neodymium magnets is not under control, at that time they may crumble and also crack. Remember not to approach them to each other or have them firmly in hands at a distance less than 10 cm.

  Neodymium magnets should not be around youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from GPS and smartphones.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Pay attention!

To show why neodymium magnets are so dangerous, see the article - How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98