SM 32x425 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130380
GTIN: 5906301813286
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
425 mm
Weight
2280 g
1266.90 ZŁ with VAT / pcs + price for transport
1030.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure about your choice?
Pick up the phone and ask
+48 22 499 98 98
otherwise send us a note through
contact form
our website.
Parameters and structure of a magnet can be verified using our
modular calculator.
Orders placed before 14:00 will be shipped the same business day.
SM 32x425 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their immense magnetic power, neodymium magnets offer the following advantages:
- Their power is durable, and after approximately 10 years, it drops only by ~1% (according to research),
- They protect against demagnetization induced by ambient electromagnetic environments effectively,
- Because of the reflective layer of gold, the component looks aesthetically refined,
- They possess significant magnetic force measurable at the magnet’s surface,
- With the right combination of magnetic alloys, they reach increased thermal stability, enabling operation at or above 230°C (depending on the design),
- With the option for fine forming and precise design, these magnets can be produced in numerous shapes and sizes, greatly improving engineering flexibility,
- Wide application in advanced technical fields – they are utilized in data storage devices, electromechanical systems, healthcare devices or even sophisticated instruments,
- Thanks to their efficiency per volume, small magnets offer high magnetic performance, with minimal size,
Disadvantages of magnetic elements:
- They are fragile when subjected to a sudden impact. If the magnets are exposed to mechanical hits, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time increases its overall strength,
- Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to humidity can rust. Therefore, for outdoor applications, we recommend waterproof types made of rubber,
- Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing fine shapes directly in the magnet,
- Safety concern from tiny pieces may arise, in case of ingestion, which is crucial in the health of young users. Furthermore, small elements from these magnets might complicate medical imaging once in the system,
- In cases of large-volume purchasing, neodymium magnet cost is a challenge,
Breakaway strength of the magnet in ideal conditions – what affects it?
The given lifting capacity of the magnet corresponds to the maximum lifting force, measured in a perfect environment, namely:
- with the use of low-carbon steel plate acting as a magnetic yoke
- having a thickness of no less than 10 millimeters
- with a refined outer layer
- with zero air gap
- with vertical force applied
- at room temperature
Determinants of lifting force in real conditions
In practice, the holding capacity of a magnet is conditioned by these factors, arranged from the most important to the least relevant:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was measured on the plate surface of 20 mm thickness, when the force acted perpendicularly, whereas under shearing force the holding force is lower. Additionally, even a small distance {between} the magnet’s surface and the plate reduces the holding force.
Safety Precautions
Neodymium magnets can demagnetize at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Neodymium magnets should not be around youngest children.
Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can shock you.
Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Avoid bringing neodymium magnets close to a phone or GPS.
Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Magnets made of neodymium are highly fragile, they easily fall apart as well as can crumble.
Neodymium magnetic are delicate as well as will shatter if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
Neodymium magnets will bounce and also touch together within a radius of several to almost 10 cm from each other.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Exercise caution!
To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are very powerful neodymium magnets?.
