SM 32x425 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130380
GTIN: 5906301813286
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
425 mm
Weight
2280 g
1266.90 ZŁ with VAT / pcs + price for transport
1030.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to talk magnets?
Give us a call
+48 22 499 98 98
otherwise contact us by means of
inquiry form
the contact form page.
Force and form of a neodymium magnet can be tested using our
force calculator.
Order by 14:00 and we’ll ship today!
SM 32x425 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their immense strength, neodymium magnets offer the following advantages:
- They virtually do not lose strength, because even after ten years, the decline in efficiency is only ~1% (based on calculations),
- They show strong resistance to demagnetization from external magnetic fields,
- By applying a reflective layer of gold, the element gains a modern look,
- They possess significant magnetic force measurable at the magnet’s surface,
- With the right combination of compounds, they reach increased thermal stability, enabling operation at or above 230°C (depending on the design),
- With the option for tailored forming and personalized design, these magnets can be produced in multiple shapes and sizes, greatly improving application potential,
- Key role in new technology industries – they are used in HDDs, electromechanical systems, clinical machines or even sophisticated instruments,
- Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in small dimensions, which makes them ideal in miniature devices
Disadvantages of neodymium magnets:
- They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks and additionally increases its overall resistance,
- Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- They rust in a moist environment. If exposed to rain, we recommend using waterproof magnets, such as those made of polymer,
- Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing holes directly in the magnet,
- Possible threat linked to microscopic shards may arise, especially if swallowed, which is crucial in the protection of children. It should also be noted that tiny components from these magnets have the potential to complicate medical imaging once in the system,
- Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications
Magnetic strength at its maximum – what affects it?
The given lifting capacity of the magnet represents the maximum lifting force, measured in a perfect environment, namely:
- with mild steel, used as a magnetic flux conductor
- with a thickness of minimum 10 mm
- with a refined outer layer
- with no separation
- with vertical force applied
- under standard ambient temperature
Practical lifting capacity: influencing factors
In practice, the holding capacity of a magnet is conditioned by these factors, from crucial to less important:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, in contrast under attempts to slide the magnet the lifting capacity is smaller. Additionally, even a small distance {between} the magnet and the plate lowers the holding force.
Safety Guidelines with Neodymium Magnets
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets should not be in the vicinity children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
Neodymium magnets jump and also touch each other mutually within a radius of several to almost 10 cm from each other.
Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can shock you at first.
To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Keep neodymium magnets away from the wallet, computer, and TV.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnetic are especially fragile, which leads to shattering.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Avoid bringing neodymium magnets close to a phone or GPS.
Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets should not be near people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Pay attention!
In order to illustrate why neodymium magnets are so dangerous, see the article - How dangerous are powerful neodymium magnets?.