tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our store's offer. Practically all magnesy neodymowe in our store are in stock for immediate delivery (see the list). Check out the magnet price list for more details check the magnet price list

Magnet for water searching F200 GOLD

Where to buy very strong magnet? Holders with magnets in airtight and durable steel casing are excellent for use in difficult weather, including snow and rain read...

magnets with holders

Magnetic holders can be used to improve production processes, exploring underwater areas, or locating meteors from gold more information...

Shipping always shipped on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available Ships tomorrow

UMGW 48x24x11.5 [M8] GW / N38 - magnetic holder internal thread

magnetic holder internal thread

Catalog no 180418

GTIN: 5906301813774

5

Diameter Ø [±0,1 mm]

48 mm

Height [±0,1 mm]

24 mm

Height [±0,1 mm]

11.5 mm

Weight

140 g

Load capacity

80 kg / 784.53 N

59.96 with VAT / pcs + price for transport

48.75 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
48.75 ZŁ
59.96 ZŁ
price from 10 pcs
45.82 ZŁ
56.36 ZŁ
price from 40 pcs
42.90 ZŁ
52.77 ZŁ

Hunting for a discount?

Give us a call +48 22 499 98 98 or let us know using inquiry form through our site.
Weight along with form of neodymium magnets can be verified using our magnetic mass calculator.

Orders submitted before 14:00 will be dispatched today!

UMGW 48x24x11.5 [M8] GW / N38 - magnetic holder internal thread

Specification/characteristics UMGW 48x24x11.5 [M8] GW / N38 - magnetic holder internal thread
properties
values
Cat. no.
180418
GTIN
5906301813774
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
48 mm [±0,1 mm]
Height
24 mm [±0,1 mm]
Height
11.5 mm [±0,1 mm]
Weight
140 g [±0,1 mm]
Load capacity ~ ?
80 kg / 784.53 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

A magnetic holder (magnet in a steel cup) is significantly stronger on one side than a bare magnet of the same dimensions. Thanks to this, the holder is more durable and safer to install. The threaded hole allows quick mounting of a hook, handle, or screw.
A too-long bolt can push out or damage the magnet glued into the bottom of the cup. We recommend checking the thread depth before assembly. It is worth securing the thread with glue if the connection is to be permanent.
These holders are commonly used in industry and advertising for quick assembly. They enable creating detachable connections. In the workshop, they can serve as mounting points for tools or jigs.
The housing has anti-corrosion protection in the form of galvanization or nickel plating. In rain and frost, the coating may degrade over time. The whole is well protected for workshop and industrial applications.
The stated force is the maximum laboratory value on a thick plate. Air gap (rust, paint) drastically reduces power. With lateral detachment (sliding), the force is only approx. 1/3 of the nominal lifting capacity.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their notable magnetic energy, neodymium magnets have these key benefits:

  • Their power is durable, and after around ten years, it drops only by ~1% (according to research),
  • They remain magnetized despite exposure to magnetic noise,
  • In other words, due to the glossy gold coating, the magnet obtains an professional appearance,
  • They exhibit elevated levels of magnetic induction near the outer area of the magnet,
  • With the right combination of magnetic alloys, they reach increased thermal stability, enabling operation at or above 230°C (depending on the design),
  • Thanks to the freedom in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which broadens their functional possibilities,
  • Key role in advanced technical fields – they find application in HDDs, rotating machines, diagnostic apparatus as well as other advanced devices,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They can break when subjected to a sudden impact. If the magnets are exposed to external force, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage while also enhances its overall robustness,
  • They lose power at elevated temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of rubber for outdoor use,
  • Limited ability to create internal holes in the magnet – the use of a external casing is recommended,
  • Possible threat from tiny pieces may arise, if ingested accidentally, which is important in the health of young users. Furthermore, minuscule fragments from these devices have the potential to interfere with diagnostics once in the system,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Magnetic strength at its maximum – what contributes to it?

The given lifting capacity of the magnet means the maximum lifting force, calculated in the best circumstances, specifically:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a polished side
  • in conditions of no clearance
  • with vertical force applied
  • in normal thermal conditions

Lifting capacity in practice – influencing factors

The lifting capacity of a magnet is influenced by in practice the following factors, ordered from most important to least significant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was conducted on plates with a smooth surface of suitable thickness, under a perpendicular pulling force, however under shearing force the lifting capacity is smaller. Additionally, even a slight gap {between} the magnet’s surface and the plate reduces the load capacity.

Be Cautious with Neodymium Magnets

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Neodymium magnets produce strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Avoid bringing neodymium magnets close to a phone or GPS.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnetic are extremely fragile, they easily fall apart and can crumble.

Neodymium magnetic are fragile and will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

If have a finger between or on the path of attracting magnets, there may be a large cut or even a fracture.

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

 It is essential to maintain neodymium magnets out of reach from youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

Pay attention!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98