tel: +48 22 499 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our proposal. Practically all "magnets" on our website are available for immediate delivery (see the list). Check out the magnet price list for more details see the magnet price list

Magnet for treasure hunters F300 GOLD

Where to buy very strong magnet? Magnetic holders in airtight, solid steel casing are perfect for use in difficult, demanding weather, including during snow and rain see more...

magnetic holders

Magnetic holders can be used to enhance production processes, underwater discoveries, or searching for space rocks from gold more information...

We promise to ship your order if the order is placed by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMGW 48x24x11.5 [M8] GW / N38 - magnetic holder internal thread

magnetic holder internal thread

Catalog no 180418

GTIN: 5906301813774

5

Diameter Ø [±0,1 mm]

48 mm

Height [±0,1 mm]

24 mm

Height [±0,1 mm]

11.5 mm

Weight

140 g

Load capacity

80 kg / 784.53 N

59.96 with VAT / pcs + price for transport

48.75 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
48.75 ZŁ
59.96 ZŁ
price from 350 pcs
45.83 ZŁ
56.36 ZŁ
price from 1500 pcs
42.90 ZŁ
52.77 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

UMGW 48x24x11.5 [M8] GW / N38 - magnetic holder internal thread

Specification/characteristics UMGW 48x24x11.5 [M8] GW / N38 - magnetic holder internal thread
properties
values
Cat. no.
180418
GTIN
5906301813774
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
48 mm [±0,1 mm]
Height
24 mm [±0,1 mm]
Height
11.5 mm [±0,1 mm]
Weight
140 g [±0,1 mm]
Load capacity ~ ?
80 kg / 784.53 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Magnetic holders featuring internal thread can be universal tools, used in industrial as well as everyday uses, such as engineering. They contain a magnetic core, typically NdFeB, enclosed in a metal shell, coated with Zn layer to prevent rusting. The internal thread, available in sizes from M4 to M8, enables mounting screws, which facilitates installation of various items, such as nameplates, instruments, or lights. They work via a powerful magnetic zone, that focuses in the contact area, providing load capacity ranging from one to sixty kilograms, based on mounting dimensions. They are especially useful in vehicle manufacturing, for example, for securing body panels, as well as in advertising, for hanging banners. Certain types have a rubber coating, e.g. in black or yellow, helping prevent surface damage and improves moisture resistance. Benefits cover great strength, ease of installation due to the internal threading, as well as the option to move massive steel components. However, the grip strength relies on surface thickness, type of steel, and the gap between holder and object. Preventing mechanical shocks is crucial, as NdFeB magnets are brittle, and over-tightening the bolt can cause damage. Moreover, a magnetic zone may interfere with electronics, like phones or data carriers, therefore mounts should be stored away from those devices. Choosing mounts from trusted suppliers is advised, to guarantee reliability and safety during use.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense strength, neodymium magnets have the following advantages:

  • They do not lose strength over time - after approximately 10 years, their strength decreases by only ~1% (theoretically),
  • They are exceptionally resistant to demagnetization caused by an external magnetic field,
  • By applying a shiny coating of nickel, gold, or silver, the element gains an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve significant thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • The ability for precise shaping and customization to specific needs – neodymium magnets can be produced in many variants of shapes or sizes, which expands the range of their possible uses.
  • Wide application in modern technologies – are utilized in HDD drives, electric drive mechanisms, medical apparatus or very highly developed apparatuses.

Disadvantages of neodymium magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • They lose strength at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the form and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Possible danger associated with microscopic parts of magnets can be dangerous, when accidentally ingested, which becomes significant in the context of child safety. Furthermore, tiny parts of these products have the potential to complicate diagnosis in case of swallowing.

Be Cautious with Neodymium Magnets

Neodymium magnets can become demagnetized at high temperatures.

Despite the general resilience of magnets, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a major injury may occur. Depending on how massive the neodymium magnets are, they can lead to a cut or alternatively a fracture.

  Do not give neodymium magnets to children.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Never bring neodymium magnets close to a phone and GPS.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnetic are particularly delicate, resulting in shattering.

Neodymium magnetic are highly delicate, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

Neodymium magnets are the strongest magnets ever created, and their power can surprise you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.

Pay attention!

In order for you to know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98