UMGW 48x24x11.5 [M8] GW / N38 - magnetic holder internal thread
magnetic holder internal thread
Catalog no 180418
GTIN: 5906301813774
Diameter Ø [±0,1 mm]
48 mm
Height [±0,1 mm]
24 mm
Height [±0,1 mm]
11.5 mm
Weight
140 g
Load capacity
80 kg / 784.53 N
59.96 ZŁ with VAT / pcs + price for transport
48.75 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Hunting for a discount?
Pick up the phone and ask
+48 22 499 98 98
if you prefer get in touch using
contact form
through our site.
Specifications along with structure of magnetic components can be checked on our
modular calculator.
Orders placed before 14:00 will be shipped the same business day.
UMGW 48x24x11.5 [M8] GW / N38 - magnetic holder internal thread
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their exceptional magnetic power, neodymium magnets offer the following advantages:
- They do not lose their even during approximately ten years – the reduction of strength is only ~1% (according to tests),
- They remain magnetized despite exposure to strong external fields,
- The use of a mirror-like gold surface provides a smooth finish,
- Magnetic induction on the surface of these magnets is impressively powerful,
- With the right combination of compounds, they reach increased thermal stability, enabling operation at or above 230°C (depending on the design),
- The ability for accurate shaping as well as adaptation to individual needs – neodymium magnets can be manufactured in many forms and dimensions, which amplifies their functionality across industries,
- Wide application in new technology industries – they are used in data storage devices, rotating machines, diagnostic apparatus or even technologically developed systems,
- Relatively small size with high magnetic force – neodymium magnets offer strong power in small dimensions, which allows for use in compact constructions
Disadvantages of rare earth magnets:
- They are fragile when subjected to a sudden impact. If the magnets are exposed to mechanical hits, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time increases its overall resistance,
- High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a damp environment. If exposed to rain, we recommend using sealed magnets, such as those made of rubber,
- The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is risky,
- Safety concern from tiny pieces may arise, if ingested accidentally, which is crucial in the health of young users. Furthermore, small elements from these products can interfere with diagnostics once in the system,
- Due to expensive raw materials, their cost is relatively high,
Highest magnetic holding force – what affects it?
The given strength of the magnet corresponds to the optimal strength, determined in the best circumstances, namely:
- with the use of low-carbon steel plate acting as a magnetic yoke
- of a thickness of at least 10 mm
- with a smooth surface
- with no separation
- in a perpendicular direction of force
- at room temperature
Lifting capacity in real conditions – factors
Practical lifting force is dependent on elements, by priority:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was measured on the plate surface of 20 mm thickness, when the force acted perpendicularly, however under attempts to slide the magnet the lifting capacity is smaller. Additionally, even a minimal clearance {between} the magnet and the plate lowers the lifting capacity.
Exercise Caution with Neodymium Magnets
Never bring neodymium magnets close to a phone and GPS.
Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
It is important to keep neodymium magnets away from youngest children.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can surprise you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
If the joining of neodymium magnets is not controlled, then they may crumble and crack. You can't move them to each other. At a distance less than 10 cm you should hold them very firmly.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Magnets made of neodymium are fragile as well as can easily crack as well as shatter.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Safety rules!
In order for you to know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.