UMGW 48x24x11.5 [M8] GW / N38 - magnetic holder internal thread
magnetic holder internal thread
Catalog no 180418
GTIN: 5906301813774
Diameter Ø [±0,1 mm]
48 mm
Height [±0,1 mm]
24 mm
Height [±0,1 mm]
11.5 mm
Weight
140 g
Load capacity
80 kg / 784.53 N
59.96 ZŁ with VAT / pcs + price for transport
48.75 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Can't decide what to choose?
Call us now
+48 22 499 98 98
alternatively drop us a message by means of
request form
the contact page.
Parameters as well as shape of a neodymium magnet can be analyzed on our
our magnetic calculator.
Same-day processing for orders placed before 14:00.
UMGW 48x24x11.5 [M8] GW / N38 - magnetic holder internal thread
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their magnetic capacity, neodymium magnets provide the following advantages:
- They do not lose their power nearly 10 years – the loss of power is only ~1% (based on measurements),
- They protect against demagnetization induced by external electromagnetic environments remarkably well,
- In other words, due to the glossy silver coating, the magnet obtains an stylish appearance,
- The outer field strength of the magnet shows remarkable magnetic properties,
- With the right combination of materials, they reach increased thermal stability, enabling operation at or above 230°C (depending on the structure),
- The ability for accurate shaping or adaptation to custom needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
- Important function in new technology industries – they serve a purpose in hard drives, rotating machines, healthcare devices or even high-tech tools,
- Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in tiny dimensions, which allows for use in compact constructions
Disadvantages of NdFeB magnets:
- They may fracture when subjected to a strong impact. If the magnets are exposed to physical collisions, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage and enhances its overall durability,
- High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Due to corrosion risk in humid conditions, it is common to use sealed magnets made of synthetic coating for outdoor use,
- The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is risky,
- Health risk linked to microscopic shards may arise, in case of ingestion, which is significant in the health of young users. Furthermore, tiny components from these magnets can interfere with diagnostics once in the system,
- High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications
Detachment force of the magnet in optimal conditions – what it depends on?
The given pulling force of the magnet means the maximum force, calculated in the best circumstances, that is:
- with mild steel, used as a magnetic flux conductor
- with a thickness of minimum 10 mm
- with a refined outer layer
- in conditions of no clearance
- with vertical force applied
- in normal thermal conditions
Key elements affecting lifting force
In practice, the holding capacity of a magnet is conditioned by the following aspects, from crucial to less important:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was carried out on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, whereas under shearing force the holding force is lower. Additionally, even a slight gap {between} the magnet’s surface and the plate reduces the load capacity.
Precautions
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Neodymium magnets are the most powerful magnets ever created, and their power can surprise you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
It is important to keep neodymium magnets out of reach from children.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are not recommended for people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Magnets made of neodymium are noted for their fragility, which can cause them to become damaged.
Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.
Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
Magnets will bounce and also touch together within a radius of several to around 10 cm from each other.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Neodymium magnets can demagnetize at high temperatures.
Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Caution!
Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
