tel: +48 22 499 98 98

neodymium magnets

We provide red color magnets Nd2Fe14B - our proposal. Practically all "magnets" on our website are in stock for immediate purchase (check the list). Check out the magnet price list for more details check the magnet price list

Magnet for treasure hunters F300 GOLD

Where to purchase strong magnet? Magnetic holders in airtight, solid enclosure are ideally suited for use in variable and difficult weather conditions, including during snow and rain see more...

magnetic holders

Holders with magnets can be applied to facilitate production processes, underwater exploration, or locating space rocks made of metal see more...

Enjoy shipping of your order on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMGZ 42x20x9 [M8] GZ / N38 - magnetic holder external thread

magnetic holder external thread

Catalog no 190332

GTIN: 5906301813859

5

Diameter Ø [±0,1 mm]

42 mm

Height [±0,1 mm]

20 mm

Height [±0,1 mm]

9 mm

Weight

80 g

Load capacity

66 kg / 647.24 N

33.96 with VAT / pcs + price for transport

27.61 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
27.61 ZŁ
33.96 ZŁ
price from 20 pcs
25.95 ZŁ
31.92 ZŁ
price from 30 pcs
24.30 ZŁ
29.89 ZŁ

Not sure which magnet to buy?

Contact us by phone +48 888 99 98 98 or let us know by means of request form the contact section.
Weight along with appearance of a magnet can be tested on our magnetic calculator.

Order by 14:00 and we’ll ship today!

UMGZ 42x20x9 [M8] GZ / N38 - magnetic holder external thread

Specification/characteristics UMGZ 42x20x9 [M8] GZ / N38 - magnetic holder external thread
properties
values
Cat. no.
190332
GTIN
5906301813859
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
42 mm [±0,1 mm]
Height
20 mm [±0,1 mm]
Height
9 mm [±0,1 mm]
Weight
80 g [±0,1 mm]
Load capacity ~ ?
66 kg / 647.24 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Mounts with built-in neodymium magnets featuring an external thread are modern accessories, used in many fields, including automotive, agriculture, or advertising. Their design relies on a strong neodymium magnet, embedded within a durable steel housing coated with zinc and nickel. Threaded pin in sizes M4–M8 allows mounting onto compatible surfaces, which enables to screw in various components. With the help of a strong magnetic field, these holders provide a holding force from 3 to 68 kg, depending on the model and size. Their use include both industrial operations and home installations. Certain models are equipped with a rubber coating, that protects surfaces from scratches and improves moisture resistance. However, it is important to remember NdFeB magnets are brittle and may break under over-tightened mounting. Caution during installation is recommended, and holders should be kept away from electronics. To ensure reliability, one should opt for models from trusted manufacturers.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their exceptional strength, neodymium magnets offer the following advantages:

  • They retain their magnetic properties for almost ten years – the drop is just ~1% (in theory),
  • They show exceptional resistance to demagnetization from external magnetic fields,
  • Because of the brilliant layer of nickel, the component looks visually appealing,
  • Magnetic induction on the surface of these magnets is notably high,
  • Thanks to their exceptional temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
  • Thanks to the freedom in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in diverse shapes and sizes, which broadens their functional possibilities,
  • Key role in new technology industries – they are used in hard drives, electric motors, healthcare devices as well as sophisticated instruments,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to physical collisions, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks and strengthens its overall durability,
  • They lose magnetic force at elevated temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a humid environment, especially when used outside, we recommend using encapsulated magnets, such as those made of rubber,
  • The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is restricted,
  • Potential hazard related to magnet particles may arise, in case of ingestion, which is significant in the family environments. Furthermore, tiny components from these magnets can interfere with diagnostics if inside the body,
  • Due to the price of neodymium, their cost is considerably higher,

Highest magnetic holding forcewhat it depends on?

The given strength of the magnet corresponds to the optimal strength, assessed in ideal conditions, that is:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with zero air gap
  • with vertical force applied
  • at room temperature

What influences lifting capacity in practice

Practical lifting force is determined by elements, by priority:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on a smooth plate of optimal thickness, under perpendicular forces, whereas under shearing force the load capacity is reduced by as much as 5 times. In addition, even a small distance {between} the magnet and the plate decreases the lifting capacity.

Safety Guidelines with Neodymium Magnets

  Do not give neodymium magnets to children.

Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Magnets will attract each other within a distance of several to about 10 cm from each other. Remember not to put fingers between magnets or alternatively in their path when attract. Depending on how large the neodymium magnets are, they can lead to a cut or alternatively a fracture.

Neodymium magnetic are characterized by their fragility, which can cause them to become damaged.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their strength can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Pay attention!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98