tel: +48 22 499 98 98

neodymium magnets

We provide red color magnetic Nd2Fe14B - our proposal. All magnesy on our website are in stock for immediate purchase (see the list). Check out the magnet pricing for more details see the magnet price list

Magnet for fishing F300 GOLD

Where to purchase very strong magnet? Magnet holders in airtight, solid steel enclosure are ideally suited for use in challenging climate conditions, including during rain and snow see more...

magnets with holders

Holders with magnets can be used to enhance production, underwater exploration, or locating meteorites made of ore check...

Enjoy delivery of your order if the order is placed before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMGGZ 34x6 [M4] GZ / N38 - rubber magnetic holder external thread

rubber magnetic holder external thread

Catalog no 340311

GTIN: 5906301814733

5

Diameter Ø [±0,1 mm]

34 mm

Height [±0,1 mm]

6 mm

Weight

26 g

Load capacity

7.7 kg / 75.51 N

9.84 with VAT / pcs + price for transport

8.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
8.00 ZŁ
9.84 ZŁ
price from 50 pcs
7.52 ZŁ
9.25 ZŁ
price from 100 pcs
7.04 ZŁ
8.66 ZŁ

Can't decide what to choose?

Contact us by phone +48 888 99 98 98 alternatively drop us a message by means of our online form the contact page.
Lifting power and structure of a neodymium magnet can be reviewed using our online calculation tool.

Orders placed before 14:00 will be shipped the same business day.

UMGGZ 34x6 [M4] GZ / N38 - rubber magnetic holder external thread

Specification/characteristics UMGGZ 34x6 [M4] GZ / N38 - rubber magnetic holder external thread
properties
values
Cat. no.
340311
GTIN
5906301814733
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
34 mm [±0,1 mm]
Height
6 mm [±0,1 mm]
Weight
26 g [±0,1 mm]
Load capacity ~ ?
7.7 kg / 75.51 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • Their magnetic field is maintained, and after approximately ten years, it drops only by ~1% (according to research),
  • Their ability to resist magnetic interference from external fields is impressive,
  • Thanks to the shiny finish and gold coating, they have an aesthetic appearance,
  • They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
  • Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • With the option for fine forming and precise design, these magnets can be produced in various shapes and sizes, greatly improving design adaptation,
  • Significant impact in cutting-edge sectors – they serve a purpose in computer drives, rotating machines, clinical machines or even sophisticated instruments,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of magnetic elements:

  • They are fragile when subjected to a heavy impact. If the magnets are exposed to mechanical hits, it is advisable to use in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time increases its overall robustness,
  • They lose field intensity at elevated temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to moisture can rust. Therefore, for outdoor applications, we recommend waterproof types made of plastic,
  • Limited ability to create threads in the magnet – the use of a external casing is recommended,
  • Safety concern related to magnet particles may arise, when consumed by mistake, which is notable in the health of young users. Furthermore, tiny components from these devices may complicate medical imaging when ingested,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Optimal lifting capacity of a neodymium magnetwhat affects it?

The given strength of the magnet means the optimal strength, measured in ideal conditions, specifically:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • in conditions of no clearance
  • with vertical force applied
  • under standard ambient temperature

Practical aspects of lifting capacity – factors

In practice, the holding capacity of a magnet is affected by these factors, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on the plate surface of 20 mm thickness, when the force acted perpendicularly, in contrast under attempts to slide the magnet the holding force is lower. Additionally, even a minimal clearance {between} the magnet and the plate lowers the load capacity.

We Recommend Caution with Neodymium Magnets

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

Keep neodymium magnets away from GPS and smartphones.

Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Magnets made of neodymium are fragile and can easily crack and shatter.

Neodymium magnets are characterized by considerable fragility. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

Magnets will attract each other within a distance of several to about 10 cm from each other. Remember not to put fingers between magnets or in their path when attract. Magnets, depending on their size, can even cut off a finger or alternatively there can be a significant pressure or even a fracture.

Neodymium magnets can demagnetize at high temperatures.

Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

  Do not give neodymium magnets to children.

Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Caution!

In order for you to know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous very powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98