tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our proposal. All "neodymium magnets" in our store are available for immediate delivery (see the list). See the magnet pricing for more details see the magnet price list

Magnet for fishing F200 GOLD

Where to buy very strong magnet? Magnet holders in airtight and durable steel casing are ideally suited for use in difficult, demanding climate conditions, including snow and rain read...

magnetic holders

Holders with magnets can be used to facilitate manufacturing, underwater discoveries, or locating meteorites made of metal see...

Enjoy shipping of your order on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMGGZ 34x6 [M4] GZ / N38 - rubber magnetic holder external thread

rubber magnetic holder external thread

Catalog no 340311

GTIN: 5906301814733

5

Diameter Ø [±0,1 mm]

34 mm

Height [±0,1 mm]

6 mm

Weight

26 g

Load capacity

7.7 kg / 75.51 N

9.84 with VAT / pcs + price for transport

8.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
8.00 ZŁ
9.84 ZŁ
price from 50 pcs
7.52 ZŁ
9.25 ZŁ
price from 100 pcs
7.04 ZŁ
8.66 ZŁ

Not sure which magnet to buy?

Call us now +48 888 99 98 98 or send us a note through form the contact form page.
Parameters along with appearance of neodymium magnets can be tested with our our magnetic calculator.

Orders placed before 14:00 will be shipped the same business day.

UMGGZ 34x6 [M4] GZ / N38 - rubber magnetic holder external thread

Specification/characteristics UMGGZ 34x6 [M4] GZ / N38 - rubber magnetic holder external thread
properties
values
Cat. no.
340311
GTIN
5906301814733
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
34 mm [±0,1 mm]
Height
6 mm [±0,1 mm]
Weight
26 g [±0,1 mm]
Load capacity ~ ?
7.7 kg / 75.51 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • They virtually do not lose power, because even after ten years, the decline in efficiency is only ~1% (in laboratory conditions),
  • They are extremely resistant to demagnetization caused by external field interference,
  • Thanks to the glossy finish and gold coating, they have an aesthetic appearance,
  • They exhibit elevated levels of magnetic induction near the outer area of the magnet,
  • Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • With the option for tailored forming and precise design, these magnets can be produced in numerous shapes and sizes, greatly improving design adaptation,
  • Wide application in new technology industries – they are utilized in HDDs, rotating machines, diagnostic apparatus as well as high-tech tools,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, with minimal size,

Disadvantages of magnetic elements:

  • They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to external force, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and enhances its overall durability,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to humidity can corrode. Therefore, for outdoor applications, we suggest waterproof types made of coated materials,
  • Limited ability to create precision features in the magnet – the use of a housing is recommended,
  • Possible threat linked to microscopic shards may arise, especially if swallowed, which is important in the health of young users. Additionally, tiny components from these magnets may hinder health screening after being swallowed,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Magnetic strength at its maximum – what contributes to it?

The given pulling force of the magnet corresponds to the maximum force, calculated under optimal conditions, specifically:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a refined outer layer
  • with zero air gap
  • with vertical force applied
  • under standard ambient temperature

Lifting capacity in real conditions – factors

In practice, the holding capacity of a magnet is affected by these factors, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was conducted on plates with a smooth surface of suitable thickness, under perpendicular forces, whereas under attempts to slide the magnet the load capacity is reduced by as much as 5 times. Additionally, even a small distance {between} the magnet and the plate reduces the load capacity.

Precautions

Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Magnets made of neodymium are extremely fragile, leading to breaking.

Magnets made of neodymium are fragile and will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets can demagnetize at high temperatures.

Despite the general resilience of magnets, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

  Do not give neodymium magnets to children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Do not bring neodymium magnets close to GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets will bounce and contact together within a distance of several to almost 10 cm from each other.

Pay attention!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98