UMGGZ 34x6 [M4] GZ / N38 - rubber magnetic holder external thread
rubber magnetic holder external thread
Catalog no 340311
GTIN: 5906301814733
Diameter Ø [±0,1 mm]
34 mm
Height [±0,1 mm]
6 mm
Weight
26 g
Load capacity
7.7 kg / 75.51 N
9.84 ZŁ with VAT / pcs + price for transport
8.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure what to buy?
Call us
+48 888 99 98 98
if you prefer get in touch via
inquiry form
through our site.
Parameters along with shape of a magnet can be tested on our
magnetic calculator.
Orders submitted before 14:00 will be dispatched today!
UMGGZ 34x6 [M4] GZ / N38 - rubber magnetic holder external thread
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their exceptional field intensity, neodymium magnets offer the following advantages:
- Their power is durable, and after approximately 10 years, it drops only by ~1% (according to research),
- Their ability to resist magnetic interference from external fields is impressive,
- Because of the reflective layer of nickel, the component looks aesthetically refined,
- They possess strong magnetic force measurable at the magnet’s surface,
- These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to build),
- The ability for precise shaping or adjustment to individual needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which enhances their versatility in applications,
- Wide application in modern technologies – they find application in data storage devices, electromechanical systems, clinical machines or even technologically developed systems,
- Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in tiny dimensions, which allows for use in small systems
Disadvantages of rare earth magnets:
- They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to shocks, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time increases its overall strength,
- High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to moisture can oxidize. Therefore, for outdoor applications, we advise waterproof types made of plastic,
- The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is difficult,
- Health risk due to small fragments may arise, especially if swallowed, which is crucial in the protection of children. Additionally, small elements from these assemblies can hinder health screening if inside the body,
- High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which can restrict large-scale applications
Optimal lifting capacity of a neodymium magnet – what it depends on?
The given strength of the magnet corresponds to the optimal strength, measured in the best circumstances, that is:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- with a thickness of minimum 10 mm
- with a smooth surface
- with zero air gap
- under perpendicular detachment force
- in normal thermal conditions
Lifting capacity in practice – influencing factors
Practical lifting force is determined by factors, by priority:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was conducted on a smooth plate of optimal thickness, under a perpendicular pulling force, however under shearing force the lifting capacity is smaller. Additionally, even a minimal clearance {between} the magnet and the plate lowers the holding force.
Safety Guidelines with Neodymium Magnets
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets are the strongest magnets ever invented. Their strength can surprise you.
To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Neodymium magnets can become demagnetized at high temperatures.
While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Magnets may crack or alternatively crumble with careless connecting to each other. Remember not to move them to each other or have them firmly in hands at a distance less than 10 cm.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Magnets made of neodymium are delicate as well as can easily break and get damaged.
Neodymium magnetic are fragile and will break if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Neodymium magnets generate intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
It is essential to maintain neodymium magnets out of reach from children.
Neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.
Caution!
So you are aware of why neodymium magnets are so dangerous, read the article titled How dangerous are very strong neodymium magnets?.
