tel: +48 22 499 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our proposal. All magnesy in our store are available for immediate delivery (check the list). See the magnet price list for more details check the magnet price list

Magnets for water searching F200 GOLD

Where to buy very strong magnet? Magnetic holders in airtight, solid steel casing are ideally suited for use in difficult climate conditions, including during rain and snow read...

magnets with holders

Holders with magnets can be used to enhance production processes, underwater exploration, or locating meteorites made of ore check...

Order is always shipped on the same day before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available Ships today (order by 14:00)

UMT 12x20 orange / N38 - board holder

board holder

Catalog no 230282

GTIN: 5906301814344

5

Diameter Ø [±0,1 mm]

12 mm

Height [±0,1 mm]

20 mm

Weight

3.5 g

Coating

[NiCuNi] nickel

1.894 with VAT / pcs + price for transport

1.540 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1.540 ZŁ
1.894 ZŁ
price from 250 pcs
1.448 ZŁ
1.781 ZŁ
price from 550 pcs
1.355 ZŁ
1.667 ZŁ

Want to negotiate?

Call us now +48 22 499 98 98 alternatively send us a note through contact form the contact form page.
Weight as well as appearance of magnetic components can be reviewed with our online calculation tool.

Same-day shipping for orders placed before 14:00.

UMT 12x20 orange / N38 - board holder

Specification/characteristics UMT 12x20 orange / N38 - board holder
properties
values
Cat. no.
230282
GTIN
5906301814344
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
12 mm [±0,1 mm]
Height
20 mm [±0,1 mm]
Weight
3.5 g [±0,1 mm]
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their exceptional pulling force, neodymium magnets offer the following advantages:

  • They retain their attractive force for around 10 years – the loss is just ~1% (according to analyses),
  • They remain magnetized despite exposure to magnetic noise,
  • The use of a polished nickel surface provides a smooth finish,
  • They exhibit superior levels of magnetic induction near the outer area of the magnet,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • Thanks to the flexibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which increases their usage potential,
  • Key role in modern technologies – they are utilized in computer drives, electric motors, healthcare devices along with high-tech tools,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to mechanical hits, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from fracture and reinforces its overall durability,
  • They lose magnetic force at increased temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to moisture can rust. Therefore, for outdoor applications, it's best to use waterproof types made of non-metallic composites,
  • The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is restricted,
  • Health risk linked to microscopic shards may arise, in case of ingestion, which is important in the protection of children. It should also be noted that tiny components from these products have the potential to hinder health screening once in the system,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Maximum holding power of the magnet – what contributes to it?

The given strength of the magnet corresponds to the optimal strength, assessed in the best circumstances, that is:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with zero air gap
  • with vertical force applied
  • at room temperature

Determinants of practical lifting force of a magnet

Practical lifting force is dependent on factors, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on plates with a smooth surface of suitable thickness, under a perpendicular pulling force, in contrast under shearing force the holding force is lower. Additionally, even a slight gap {between} the magnet’s surface and the plate reduces the holding force.

Handle Neodymium Magnets Carefully

Neodymium magnets should not be near people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets are the strongest magnets ever invented. Their strength can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Neodymium magnets are delicate and can easily break and get damaged.

Neodymium magnets are extremely fragile, and by joining them in an uncontrolled manner, they will crumble. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets may crack or alternatively crumble with uncontrolled joining to each other. You can't move them to each other. At a distance less than 10 cm you should have them very firmly.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

 Maintain neodymium magnets away from youngest children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Pay attention!

So that know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98