MP 5x2.7/1.2x5 C / N38 - ring magnet
ring magnet
Catalog no 030201
GTIN: 5906301812180
Diameter [±0,1 mm]
5 mm
internal diameter Ø [±0,1 mm]
2.7/1.2 mm
Height [±0,1 mm]
5 mm
Weight
3.59 g
Magnetization Direction
↑ axial
Load capacity
0.56 kg / 5.49 N
Magnetic Induction
56.04 mT
Coating
[NiCuNi] nickel
0.836 ZŁ with VAT / pcs + price for transport
0.680 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Can't decide what to choose?
Pick up the phone and ask
+48 22 499 98 98
otherwise let us know by means of
contact form
through our site.
Parameters along with structure of magnetic components can be checked on our
force calculator.
Orders submitted before 14:00 will be dispatched today!
MP 5x2.7/1.2x5 C / N38 - ring magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their magnetic efficiency, neodymium magnets provide the following advantages:
- Their power is durable, and after approximately 10 years, it drops only by ~1% (theoretically),
- They show exceptional resistance to demagnetization from outside magnetic sources,
- Thanks to the polished finish and nickel coating, they have an visually attractive appearance,
- They possess strong magnetic force measurable at the magnet’s surface,
- With the right combination of compounds, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the design),
- Thanks to the possibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in various configurations, which increases their functional possibilities,
- Key role in new technology industries – they serve a purpose in computer drives, electric drives, clinical machines as well as high-tech tools,
- Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in small dimensions, which allows for use in miniature devices
Disadvantages of NdFeB magnets:
- They are fragile when subjected to a sudden impact. If the magnets are exposed to external force, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks and increases its overall resistance,
- They lose strength at high temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a moist environment. If exposed to rain, we recommend using encapsulated magnets, such as those made of plastic,
- Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing holes directly in the magnet,
- Safety concern from tiny pieces may arise, if ingested accidentally, which is significant in the protection of children. Furthermore, miniature parts from these devices might complicate medical imaging after being swallowed,
- Due to a complex production process, their cost is relatively high,
Best holding force of the magnet in ideal parameters – what it depends on?
The given strength of the magnet represents the optimal strength, calculated under optimal conditions, specifically:
- with mild steel, serving as a magnetic flux conductor
- of a thickness of at least 10 mm
- with a smooth surface
- with zero air gap
- under perpendicular detachment force
- at room temperature
Practical aspects of lifting capacity – factors
The lifting capacity of a magnet depends on in practice key elements, ordered from most important to least significant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was determined by applying a steel plate with a smooth surface of optimal thickness (min. 20 mm), under perpendicular detachment force, in contrast under attempts to slide the magnet the holding force is lower. In addition, even a small distance {between} the magnet and the plate reduces the holding force.
Exercise Caution with Neodymium Magnets
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
The magnet is coated with nickel - be careful if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.
Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Keep neodymium magnets away from GPS and smartphones.
Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can shock you at first.
To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
If joining of neodymium magnets is not controlled, at that time they may crumble and also crack. Remember not to approach them to each other or hold them firmly in hands at a distance less than 10 cm.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Neodymium magnets can become demagnetized at high temperatures.
Even though magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Neodymium magnets are delicate as well as can easily crack and shatter.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Be careful!
In order for you to know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous powerful neodymium magnets.
