Neodymiums – complete shape selection

Looking for massive power in small size? Our range includes complete range of various shapes and sizes. They are ideal for home use, garage and model making. See products available immediately.

check full offer

Equipment for treasure hunters

Discover your passion involving underwater treasure hunting! Our double-handle grips (F200, F400) provide safety guarantee and huge lifting capacity. Stainless steel construction and reinforced ropes will perform in challenging water conditions.

find your water magnet

Magnetic mounts for industry

Proven solutions for fixing non-invasive. Threaded grips (M8, M10, M12) guarantee quick improvement of work on production halls. Perfect for mounting lighting, sensors and banners.

check technical specs

📦 Fast shipping: buy by 14:00, we'll ship today!

Dhit sp. z o.o.
Product available Ships today (order by 14:00)

MP 5x2.7/1.2x5 C / N38 - ring magnet

ring magnet

Catalog no 030201

GTIN/EAN: 5906301812180

5.00

Diameter

5 mm [±0,1 mm]

internal diameter Ø

2.7/1.2 mm [±0,1 mm]

Height

5 mm [±0,1 mm]

Weight

0.69 g

Magnetization Direction

↑ axial

Load capacity

0.75 kg / 7.31 N

Magnetic Induction

553.14 mT / 5531 Gs

Coating

[NiCuNi] Nickel

0.836 with VAT / pcs + price for transport

0.680 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.680 ZŁ
0.836 ZŁ
price from 900 pcs
0.639 ZŁ
0.786 ZŁ
price from 3700 pcs
0.598 ZŁ
0.736 ZŁ
Not sure which magnet to buy?

Give us a call +48 888 99 98 98 alternatively send us a note by means of inquiry form the contact page.
Lifting power along with structure of a magnet can be tested with our magnetic calculator.

Same-day processing for orders placed before 14:00.

Technical specification - MP 5x2.7/1.2x5 C / N38 - ring magnet

Specification / characteristics - MP 5x2.7/1.2x5 C / N38 - ring magnet

properties
properties values
Cat. no. 030201
GTIN/EAN 5906301812180
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
Diameter 5 mm [±0,1 mm]
internal diameter Ø 2.7/1.2 mm [±0,1 mm]
Height 5 mm [±0,1 mm]
Weight 0.69 g
Magnetization Direction ↑ axial
Load capacity ~ ? 0.75 kg / 7.31 N
Magnetic Induction ~ ? 553.14 mT / 5531 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MP 5x2.7/1.2x5 C / N38 - ring magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Physical analysis of the magnet - technical parameters

Presented information are the outcome of a physical analysis. Results rely on models for the class Nd2Fe14B. Real-world conditions might slightly differ. Please consider these calculations as a reference point during assembly planning.

Table 1: Static pull force (pull vs gap) - interaction chart
MP 5x2.7/1.2x5 C / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 5322 Gs
532.2 mT
0.75 kg / 1.65 lbs
750.0 g / 7.4 N
safe
1 mm 3295 Gs
329.5 mT
0.29 kg / 0.63 lbs
287.5 g / 2.8 N
safe
2 mm 1883 Gs
188.3 mT
0.09 kg / 0.21 lbs
93.9 g / 0.9 N
safe
3 mm 1098 Gs
109.8 mT
0.03 kg / 0.07 lbs
31.9 g / 0.3 N
safe
5 mm 440 Gs
44.0 mT
0.01 kg / 0.01 lbs
5.1 g / 0.1 N
safe
10 mm 92 Gs
9.2 mT
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
safe
15 mm 33 Gs
3.3 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
safe
20 mm 15 Gs
1.5 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
safe
30 mm 5 Gs
0.5 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
safe
50 mm 1 Gs
0.1 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
safe

Table 2: Vertical hold (vertical surface)
MP 5x2.7/1.2x5 C / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 0.15 kg / 0.33 lbs
150.0 g / 1.5 N
1 mm Stal (~0.2) 0.06 kg / 0.13 lbs
58.0 g / 0.6 N
2 mm Stal (~0.2) 0.02 kg / 0.04 lbs
18.0 g / 0.2 N
3 mm Stal (~0.2) 0.01 kg / 0.01 lbs
6.0 g / 0.1 N
5 mm Stal (~0.2) 0.00 kg / 0.00 lbs
2.0 g / 0.0 N
10 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Table 3: Wall mounting (shearing) - vertical pull
MP 5x2.7/1.2x5 C / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
0.22 kg / 0.50 lbs
225.0 g / 2.2 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
0.15 kg / 0.33 lbs
150.0 g / 1.5 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
0.08 kg / 0.17 lbs
75.0 g / 0.7 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
0.38 kg / 0.83 lbs
375.0 g / 3.7 N

Table 4: Material efficiency (saturation) - sheet metal selection
MP 5x2.7/1.2x5 C / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
10%
0.08 kg / 0.17 lbs
75.0 g / 0.7 N
1 mm
25%
0.19 kg / 0.41 lbs
187.5 g / 1.8 N
2 mm
50%
0.38 kg / 0.83 lbs
375.0 g / 3.7 N
3 mm
75%
0.56 kg / 1.24 lbs
562.5 g / 5.5 N
5 mm
100%
0.75 kg / 1.65 lbs
750.0 g / 7.4 N
10 mm
100%
0.75 kg / 1.65 lbs
750.0 g / 7.4 N
11 mm
100%
0.75 kg / 1.65 lbs
750.0 g / 7.4 N
12 mm
100%
0.75 kg / 1.65 lbs
750.0 g / 7.4 N

Table 5: Working in heat (material behavior) - power drop
MP 5x2.7/1.2x5 C / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 0.75 kg / 1.65 lbs
750.0 g / 7.4 N
OK
40 °C -2.2% 0.73 kg / 1.62 lbs
733.5 g / 7.2 N
OK
60 °C -4.4% 0.72 kg / 1.58 lbs
717.0 g / 7.0 N
OK
80 °C -6.6% 0.70 kg / 1.54 lbs
700.5 g / 6.9 N
100 °C -28.8% 0.53 kg / 1.18 lbs
534.0 g / 5.2 N

Table 6: Magnet-Magnet interaction (repulsion) - field collision
MP 5x2.7/1.2x5 C / N38

Gap (mm) Attraction (kg/lbs) (N-S) Shear Force (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 2.75 kg / 6.06 lbs
5 924 Gs
0.41 kg / 0.91 lbs
412 g / 4.0 N
N/A
1 mm 1.77 kg / 3.90 lbs
8 541 Gs
0.27 kg / 0.58 lbs
265 g / 2.6 N
1.59 kg / 3.51 lbs
~0 Gs
2 mm 1.05 kg / 2.32 lbs
6 590 Gs
0.16 kg / 0.35 lbs
158 g / 1.5 N
0.95 kg / 2.09 lbs
~0 Gs
3 mm 0.60 kg / 1.33 lbs
4 992 Gs
0.09 kg / 0.20 lbs
91 g / 0.9 N
0.54 kg / 1.20 lbs
~0 Gs
5 mm 0.20 kg / 0.44 lbs
2 860 Gs
0.03 kg / 0.07 lbs
30 g / 0.3 N
0.18 kg / 0.39 lbs
~0 Gs
10 mm 0.02 kg / 0.04 lbs
880 Gs
0.00 kg / 0.01 lbs
3 g / 0.0 N
0.02 kg / 0.04 lbs
~0 Gs
20 mm 0.00 kg / 0.00 lbs
184 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
16 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
10 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
6 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
4 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
3 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
2 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Table 7: Protective zones (implants) - warnings
MP 5x2.7/1.2x5 C / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 3.0 cm
Hearing aid 10 Gs (1.0 mT) 2.5 cm
Mechanical watch 20 Gs (2.0 mT) 2.0 cm
Mobile device 40 Gs (4.0 mT) 1.5 cm
Remote 50 Gs (5.0 mT) 1.5 cm
Payment card 400 Gs (40.0 mT) 1.0 cm
HDD hard drive 600 Gs (60.0 mT) 0.5 cm

Table 8: Impact energy (kinetic energy) - collision effects
MP 5x2.7/1.2x5 C / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 33.26 km/h
(9.24 m/s)
0.03 J
30 mm 57.59 km/h
(16.00 m/s)
0.09 J
50 mm 74.35 km/h
(20.65 m/s)
0.15 J
100 mm 105.14 km/h
(29.21 m/s)
0.29 J

Table 9: Surface protection spec
MP 5x2.7/1.2x5 C / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Construction data (Flux)
MP 5x2.7/1.2x5 C / N38

Parameter Value SI Unit / Description
Magnetic Flux 862 Mx 8.6 µWb
Pc Coefficient 0.83 High (Stable)

Table 11: Underwater work (magnet fishing)
MP 5x2.7/1.2x5 C / N38

Environment Effective steel pull Effect
Air (land) 0.75 kg Standard
Water (riverbed) 0.86 kg
(+0.11 kg buoyancy gain)
+14.5%
Corrosion warning: Remember to wipe the magnet thoroughly after removing it from water and apply a protective layer (e.g., oil) to avoid corrosion.
1. Shear force

*Warning: On a vertical wall, the magnet retains only ~20% of its perpendicular strength.

2. Steel thickness impact

*Thin steel (e.g. 0.5mm PC case) severely limits the holding force.

3. Power loss vs temp

*For standard magnets, the max working temp is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.83

This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Technical specification and ecology
Elemental analysis
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Sustainability
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 030201-2026
Magnet Unit Converter
Force (pull)

Magnetic Field

Other offers

The ring-shaped magnet MP 5x2.7/1.2x5 C / N38 is created for mechanical fastening, where glue might fail or be insufficient. Thanks to the hole (often for a screw), this model enables quick installation to wood, wall, plastic, or metal. This product with a force of 0.75 kg works great as a door latch, speaker holder, or spacer element in devices.
This is a crucial issue when working with model MP 5x2.7/1.2x5 C / N38. Neodymium magnets are sintered ceramics, which means they are very brittle and inelastic. When tightening the screw, you must maintain caution. We recommend tightening manually with a screwdriver, not an impact driver, because too much pressure will cause the ring to crack. It's a good idea to use a rubber spacer under the screw head, which will cushion the stresses. Remember: cracking during assembly results from material properties, not a product defect.
These magnets are coated with standard Ni-Cu-Ni plating, which protects them in indoor conditions, but does not ensure full waterproofing. In the place of the mounting hole, the coating is thinner and can be damaged when tightening the screw, which will become a corrosion focus. If you must use it outside, paint it with anti-corrosion paint after mounting.
A screw or bolt with a thread diameter smaller than 2.7/1.2 mm fits this model. If the magnet does not have a chamfer (cone), we recommend using a screw with a flat or cylindrical head, or possibly using a washer. Aesthetic mounting requires selecting the appropriate head size.
The presented product is a ring magnet with dimensions Ø5 mm (outer diameter) and height 5 mm. The key parameter here is the holding force amounting to approximately 0.75 kg (force ~7.31 N). The product has a [NiCuNi] coating and is made of NdFeB material. Inner hole dimension: 2.7/1.2 mm.
These magnets are magnetized axially (through the thickness), which means one flat side is the N pole and the other is S. In the case of connecting two rings, make sure one is turned the right way. We do not offer paired sets with marked poles in this category, but they are easy to match manually.

Pros and cons of neodymium magnets.

Advantages

In addition to their pulling strength, neodymium magnets provide the following advantages:
  • They virtually do not lose power, because even after 10 years the decline in efficiency is only ~1% (according to literature),
  • They are noted for resistance to demagnetization induced by external disturbances,
  • By applying a lustrous layer of nickel, the element acquires an modern look,
  • Neodymium magnets generate maximum magnetic induction on a small surface, which increases force concentration,
  • Through (adequate) combination of ingredients, they can achieve high thermal strength, allowing for action at temperatures approaching 230°C and above...
  • Possibility of accurate shaping as well as adapting to defined conditions,
  • Huge importance in high-tech industry – they are used in hard drives, motor assemblies, medical equipment, also multitasking production systems.
  • Compactness – despite small sizes they generate large force, making them ideal for precision applications

Weaknesses

Disadvantages of NdFeB magnets:
  • Brittleness is one of their disadvantages. Upon intense impact they can fracture. We recommend keeping them in a special holder, which not only protects them against impacts but also increases their durability
  • NdFeB magnets lose force when exposed to high temperatures. After reaching 80°C, many of them experience permanent drop of power (a factor is the shape as well as dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are very resistant to heat
  • Magnets exposed to a humid environment can corrode. Therefore while using outdoors, we advise using water-impermeable magnets made of rubber, plastic or other material protecting against moisture
  • Due to limitations in realizing threads and complicated shapes in magnets, we propose using cover - magnetic mount.
  • Potential hazard related to microscopic parts of magnets pose a threat, when accidentally swallowed, which becomes key in the context of child safety. Furthermore, tiny parts of these magnets are able to be problematic in diagnostics medical in case of swallowing.
  • With mass production the cost of neodymium magnets can be a barrier,

Holding force characteristics

Magnetic strength at its maximum – what affects it?

Magnet power was defined for ideal contact conditions, assuming:
  • on a base made of structural steel, effectively closing the magnetic field
  • whose transverse dimension equals approx. 10 mm
  • characterized by even structure
  • under conditions of no distance (surface-to-surface)
  • during detachment in a direction perpendicular to the mounting surface
  • at ambient temperature room level

What influences lifting capacity in practice

During everyday use, the actual lifting capacity results from a number of factors, presented from most significant:
  • Air gap (betwixt the magnet and the metal), because even a very small clearance (e.g. 0.5 mm) can cause a reduction in force by up to 50% (this also applies to paint, corrosion or debris).
  • Angle of force application – highest force is available only during perpendicular pulling. The shear force of the magnet along the plate is typically several times smaller (approx. 1/5 of the lifting capacity).
  • Element thickness – to utilize 100% power, the steel must be sufficiently thick. Thin sheet restricts the attraction force (the magnet "punches through" it).
  • Steel grade – the best choice is pure iron steel. Cast iron may attract less.
  • Surface structure – the more even the surface, the larger the contact zone and stronger the hold. Roughness creates an air distance.
  • Heat – neodymium magnets have a sensitivity to temperature. When it is hot they are weaker, and in frost they can be stronger (up to a certain limit).

Lifting capacity was determined with the use of a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, however under attempts to slide the magnet the lifting capacity is smaller. In addition, even a minimal clearance between the magnet and the plate lowers the holding force.

Precautions when working with neodymium magnets
This is not a toy

Adult use only. Tiny parts pose a choking risk, leading to serious injuries. Keep away from children and animals.

Handling guide

Handle magnets with awareness. Their huge power can shock even experienced users. Stay alert and respect their force.

Serious injuries

Protect your hands. Two powerful magnets will snap together immediately with a force of massive weight, destroying everything in their path. Exercise extreme caution!

Warning for heart patients

For implant holders: Strong magnetic fields disrupt electronics. Keep at least 30 cm distance or request help to handle the magnets.

Nickel allergy

Some people suffer from a contact allergy to nickel, which is the common plating for neodymium magnets. Prolonged contact may cause dermatitis. We suggest wear safety gloves.

Fire warning

Machining of NdFeB material poses a fire hazard. Neodymium dust reacts violently with oxygen and is difficult to extinguish.

Data carriers

Powerful magnetic fields can erase data on payment cards, hard drives, and other magnetic media. Maintain a gap of min. 10 cm.

Power loss in heat

Standard neodymium magnets (grade N) lose magnetization when the temperature exceeds 80°C. This process is irreversible.

Shattering risk

Despite the nickel coating, neodymium is delicate and not impact-resistant. Do not hit, as the magnet may shatter into hazardous fragments.

GPS and phone interference

A strong magnetic field disrupts the operation of compasses in smartphones and navigation systems. Keep magnets near a smartphone to prevent damaging the sensors.

Attention! Want to know more? Check our post: Why are neodymium magnets dangerous?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98