MP 5x2.7/1.2x5 C / N38 - ring magnet
ring magnet
Catalog no 030201
GTIN/EAN: 5906301812180
Diameter
5 mm [±0,1 mm]
internal diameter Ø
2.7/1.2 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
0.69 g
Magnetization Direction
↑ axial
Load capacity
0.75 kg / 7.31 N
Magnetic Induction
553.14 mT / 5531 Gs
Coating
[NiCuNi] Nickel
0.836 ZŁ with VAT / pcs + price for transport
0.680 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Give us a call
+48 22 499 98 98
alternatively drop us a message by means of
request form
the contact section.
Strength as well as appearance of magnets can be analyzed on our
magnetic mass calculator.
Order by 14:00 and we’ll ship today!
Technical - MP 5x2.7/1.2x5 C / N38 - ring magnet
Specification / characteristics - MP 5x2.7/1.2x5 C / N38 - ring magnet
| properties | values |
|---|---|
| Cat. no. | 030201 |
| GTIN/EAN | 5906301812180 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter | 5 mm [±0,1 mm] |
| internal diameter Ø | 2.7/1.2 mm [±0,1 mm] |
| Height | 5 mm [±0,1 mm] |
| Weight | 0.69 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.75 kg / 7.31 N |
| Magnetic Induction ~ ? | 553.14 mT / 5531 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical modeling of the product - report
The following values represent the result of a engineering analysis. Results rely on algorithms for the class Nd2Fe14B. Operational performance might slightly differ from theoretical values. Treat these data as a reference point for designers.
Table 1: Static pull force (pull vs distance) - power drop
MP 5x2.7/1.2x5 C / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
5322 Gs
532.2 mT
|
0.75 kg / 1.65 pounds
750.0 g / 7.4 N
|
low risk |
| 1 mm |
3295 Gs
329.5 mT
|
0.29 kg / 0.63 pounds
287.5 g / 2.8 N
|
low risk |
| 2 mm |
1883 Gs
188.3 mT
|
0.09 kg / 0.21 pounds
93.9 g / 0.9 N
|
low risk |
| 3 mm |
1098 Gs
109.8 mT
|
0.03 kg / 0.07 pounds
31.9 g / 0.3 N
|
low risk |
| 5 mm |
440 Gs
44.0 mT
|
0.01 kg / 0.01 pounds
5.1 g / 0.1 N
|
low risk |
| 10 mm |
92 Gs
9.2 mT
|
0.00 kg / 0.00 pounds
0.2 g / 0.0 N
|
low risk |
| 15 mm |
33 Gs
3.3 mT
|
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
low risk |
| 20 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
low risk |
| 30 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
low risk |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
low risk |
Table 2: Sliding hold (wall)
MP 5x2.7/1.2x5 C / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.15 kg / 0.33 pounds
150.0 g / 1.5 N
|
| 1 mm | Stal (~0.2) |
0.06 kg / 0.13 pounds
58.0 g / 0.6 N
|
| 2 mm | Stal (~0.2) |
0.02 kg / 0.04 pounds
18.0 g / 0.2 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 0.01 pounds
6.0 g / 0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
2.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
|
Table 3: Wall mounting (shearing) - behavior on slippery surfaces
MP 5x2.7/1.2x5 C / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.22 kg / 0.50 pounds
225.0 g / 2.2 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.15 kg / 0.33 pounds
150.0 g / 1.5 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.08 kg / 0.17 pounds
75.0 g / 0.7 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.38 kg / 0.83 pounds
375.0 g / 3.7 N
|
Table 4: Material efficiency (saturation) - power losses
MP 5x2.7/1.2x5 C / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.08 kg / 0.17 pounds
75.0 g / 0.7 N
|
| 1 mm |
|
0.19 kg / 0.41 pounds
187.5 g / 1.8 N
|
| 2 mm |
|
0.38 kg / 0.83 pounds
375.0 g / 3.7 N
|
| 3 mm |
|
0.56 kg / 1.24 pounds
562.5 g / 5.5 N
|
| 5 mm |
|
0.75 kg / 1.65 pounds
750.0 g / 7.4 N
|
| 10 mm |
|
0.75 kg / 1.65 pounds
750.0 g / 7.4 N
|
| 11 mm |
|
0.75 kg / 1.65 pounds
750.0 g / 7.4 N
|
| 12 mm |
|
0.75 kg / 1.65 pounds
750.0 g / 7.4 N
|
Table 5: Thermal resistance (stability) - power drop
MP 5x2.7/1.2x5 C / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.75 kg / 1.65 pounds
750.0 g / 7.4 N
|
OK |
| 40 °C | -2.2% |
0.73 kg / 1.62 pounds
733.5 g / 7.2 N
|
OK |
| 60 °C | -4.4% |
0.72 kg / 1.58 pounds
717.0 g / 7.0 N
|
OK |
| 80 °C | -6.6% |
0.70 kg / 1.54 pounds
700.5 g / 6.9 N
|
|
| 100 °C | -28.8% |
0.53 kg / 1.18 pounds
534.0 g / 5.2 N
|
Table 6: Two magnets (attraction) - field range
MP 5x2.7/1.2x5 C / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.75 kg / 6.06 pounds
5 924 Gs
|
0.41 kg / 0.91 pounds
412 g / 4.0 N
|
N/A |
| 1 mm |
1.77 kg / 3.90 pounds
8 541 Gs
|
0.27 kg / 0.58 pounds
265 g / 2.6 N
|
1.59 kg / 3.51 pounds
~0 Gs
|
| 2 mm |
1.05 kg / 2.32 pounds
6 590 Gs
|
0.16 kg / 0.35 pounds
158 g / 1.5 N
|
0.95 kg / 2.09 pounds
~0 Gs
|
| 3 mm |
0.60 kg / 1.33 pounds
4 992 Gs
|
0.09 kg / 0.20 pounds
91 g / 0.9 N
|
0.54 kg / 1.20 pounds
~0 Gs
|
| 5 mm |
0.20 kg / 0.44 pounds
2 860 Gs
|
0.03 kg / 0.07 pounds
30 g / 0.3 N
|
0.18 kg / 0.39 pounds
~0 Gs
|
| 10 mm |
0.02 kg / 0.04 pounds
880 Gs
|
0.00 kg / 0.01 pounds
3 g / 0.0 N
|
0.02 kg / 0.04 pounds
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 pounds
184 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 pounds
16 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 pounds
10 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 pounds
6 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 pounds
4 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 pounds
3 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 pounds
2 Gs
|
0.00 kg / 0.00 pounds
0 g / 0.0 N
|
0.00 kg / 0.00 pounds
~0 Gs
|
Table 7: Hazards (implants) - precautionary measures
MP 5x2.7/1.2x5 C / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 3.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 2.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 2.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 1.5 cm |
| Car key | 50 Gs (5.0 mT) | 1.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Collisions (kinetic energy) - collision effects
MP 5x2.7/1.2x5 C / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
33.26 km/h
(9.24 m/s)
|
0.03 J | |
| 30 mm |
57.59 km/h
(16.00 m/s)
|
0.09 J | |
| 50 mm |
74.35 km/h
(20.65 m/s)
|
0.15 J | |
| 100 mm |
105.14 km/h
(29.21 m/s)
|
0.29 J |
Table 9: Coating parameters (durability)
MP 5x2.7/1.2x5 C / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MP 5x2.7/1.2x5 C / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 862 Mx | 8.6 µWb |
| Pc Coefficient | 0.83 | High (Stable) |
Table 11: Submerged application
MP 5x2.7/1.2x5 C / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.75 kg | Standard |
| Water (riverbed) |
0.86 kg
(+0.11 kg buoyancy gain)
|
+14.5% |
1. Vertical hold
*Note: On a vertical wall, the magnet holds only ~20% of its max power.
2. Steel thickness impact
*Thin metal sheet (e.g. computer case) severely weakens the holding force.
3. Thermal stability
*For N38 material, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.83
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Check out also products
Strengths and weaknesses of rare earth magnets.
Benefits
- They retain full power for almost 10 years – the drop is just ~1% (based on simulations),
- They are resistant to demagnetization induced by presence of other magnetic fields,
- Thanks to the shiny finish, the layer of Ni-Cu-Ni, gold-plated, or silver gives an visually attractive appearance,
- They show high magnetic induction at the operating surface, which improves attraction properties,
- Neodymium magnets are characterized by very high magnetic induction on the magnet surface and are able to act (depending on the form) even at a temperature of 230°C or more...
- Possibility of individual modeling as well as adapting to complex applications,
- Huge importance in electronics industry – they find application in magnetic memories, electric drive systems, diagnostic systems, and multitasking production systems.
- Relatively small size with high pulling force – neodymium magnets offer strong magnetic field in tiny dimensions, which makes them useful in compact constructions
Cons
- Susceptibility to cracking is one of their disadvantages. Upon strong impact they can fracture. We advise keeping them in a strong case, which not only secures them against impacts but also raises their durability
- Neodymium magnets lose their force under the influence of heating. As soon as 80°C is exceeded, many of them start losing their power. Therefore, we recommend our special magnets marked [AH], which maintain durability even at temperatures up to 230°C
- Magnets exposed to a humid environment can corrode. Therefore when using outdoors, we suggest using waterproof magnets made of rubber, plastic or other material resistant to moisture
- We recommend a housing - magnetic mechanism, due to difficulties in creating threads inside the magnet and complex shapes.
- Potential hazard to health – tiny shards of magnets are risky, when accidentally swallowed, which gains importance in the aspect of protecting the youngest. Furthermore, tiny parts of these magnets are able to be problematic in diagnostics medical in case of swallowing.
- Due to neodymium price, their price is relatively high,
Lifting parameters
Best holding force of the magnet in ideal parameters – what contributes to it?
- with the contact of a sheet made of special test steel, guaranteeing maximum field concentration
- whose transverse dimension reaches at least 10 mm
- characterized by smoothness
- under conditions of no distance (metal-to-metal)
- during pulling in a direction perpendicular to the plane
- at room temperature
Key elements affecting lifting force
- Gap between magnet and steel – every millimeter of distance (caused e.g. by veneer or unevenness) significantly weakens the magnet efficiency, often by half at just 0.5 mm.
- Angle of force application – highest force is obtained only during perpendicular pulling. The force required to slide of the magnet along the surface is standardly several times lower (approx. 1/5 of the lifting capacity).
- Steel thickness – insufficiently thick sheet does not accept the full field, causing part of the power to be lost into the air.
- Material composition – different alloys attracts identically. High carbon content weaken the interaction with the magnet.
- Surface structure – the smoother and more polished the plate, the better the adhesion and stronger the hold. Unevenness creates an air distance.
- Operating temperature – NdFeB sinters have a sensitivity to temperature. At higher temperatures they lose power, and at low temperatures they can be stronger (up to a certain limit).
Holding force was checked on the plate surface of 20 mm thickness, when the force acted perpendicularly, however under shearing force the load capacity is reduced by as much as 5 times. Moreover, even a minimal clearance between the magnet and the plate decreases the lifting capacity.
Safe handling of neodymium magnets
No play value
Product intended for adults. Small elements can be swallowed, causing severe trauma. Store away from kids and pets.
Machining danger
Dust created during grinding of magnets is flammable. Do not drill into magnets without proper cooling and knowledge.
Warning for heart patients
Individuals with a pacemaker must keep an large gap from magnets. The magnetic field can disrupt the operation of the life-saving device.
Nickel allergy
Warning for allergy sufferers: The Ni-Cu-Ni coating contains nickel. If skin irritation appears, cease working with magnets and use protective gear.
Threat to electronics
Equipment safety: Strong magnets can ruin data carriers and sensitive devices (heart implants, medical aids, timepieces).
Phone sensors
Note: neodymium magnets generate a field that confuses sensitive sensors. Maintain a separation from your mobile, tablet, and GPS.
Finger safety
Big blocks can smash fingers in a fraction of a second. Do not place your hand between two attracting surfaces.
Risk of cracking
NdFeB magnets are ceramic materials, which means they are prone to chipping. Collision of two magnets will cause them breaking into shards.
Demagnetization risk
Avoid heat. NdFeB magnets are sensitive to heat. If you require operation above 80°C, inquire about HT versions (H, SH, UH).
Powerful field
Handle with care. Neodymium magnets act from a long distance and snap with huge force, often faster than you can react.
