tel: +48 22 499 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our proposal. Practically all magnesy neodymowe in our store are available for immediate purchase (check the list). See the magnet price list for more details see the magnet price list

Magnets for fishing F200 GOLD

Where to purchase very strong magnet? Magnetic holders in airtight and durable steel casing are perfect for use in difficult, demanding climate conditions, including snow and rain see more...

magnets with holders

Holders with magnets can be used to enhance production, underwater discoveries, or finding space rocks from gold more...

We promise to ship your order on the day of purchase before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MP 5x2.7/1.2x5 C / N38 - ring magnet

ring magnet

Catalog no 030201

GTIN: 5906301812180

5

Diameter [±0,1 mm]

5 mm

internal diameter Ø [±0,1 mm]

2.7/1.2 mm

Height [±0,1 mm]

5 mm

Weight

3.59 g

Magnetization Direction

↑ axial

Load capacity

0.56 kg / 5.49 N

Magnetic Induction

56.04 mT

Coating

[NiCuNi] nickel

0.836 with VAT / pcs + price for transport

0.680 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.680 ZŁ
0.836 ZŁ
price from 900 pcs
0.639 ZŁ
0.786 ZŁ
price from 3700 pcs
0.598 ZŁ
0.736 ZŁ

Hunting for a discount?

Call us now +48 22 499 98 98 otherwise send us a note by means of inquiry form through our site.
Force along with appearance of magnets can be analyzed with our magnetic mass calculator.

Same-day processing for orders placed before 14:00.

MP 5x2.7/1.2x5 C / N38 - ring magnet

Specification/characteristics MP 5x2.7/1.2x5 C / N38 - ring magnet
properties
values
Cat. no.
030201
GTIN
5906301812180
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter
5 mm [±0,1 mm]
internal diameter Ø
2.7/1.2 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
3.59 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
0.56 kg / 5.49 N
Magnetic Induction ~ ?
56.04 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium magnets MP 5x2.7/1.2x5 C / N38 in a ring form are frequently used in various industries due to their specific properties. Thanks to a powerful magnetic field of 0.56 kg, which can be described as strength, they are very helpful in applications that require high magnetic power in a relatively small area. Usage of MP 5x2.7/1.2x5 C / N38 magnets include electrical mechanisms, generating systems, audio systems, and numerous other devices that use magnets for generating motion or storing energy. Despite their powerful strength, they have a relatively low weight of 3.59 grams, which makes them more practical compared to heavier alternatives.
The operation of ring magnets results from their unique atomic structure. In the production process, neodymium atoms are arranged appropriately, which allows for the creation of a concentrated magnetic field in a specific direction. This field is ideal for applications in systems requiring motion control. Additionally, their resistance to high temperatures and demagnetization makes them indispensable in industry.
Ring magnets have a wide range of applications in many industries, such as electronics, e.g., in the production of speakers or electric motors, automotive, where they are used in brushless electric motors, and medicine, where they are used in precision diagnostic devices. Their ability to work in high temperatures and precise magnetic field control makes them indispensable in challenging industrial conditions.
Ring magnets stand out extraordinary pulling power, resistance to high temperatures, and precision in generating the magnetic field. Their unique ring form allows for effective use in devices such as motors or speakers. Moreover, these magnets are significantly stronger and more versatile than ferrite counterparts, which has made them popular in advanced technologies and industrial applications.
Thanks to their resistance to high temperatures, ring magnets operate reliably even in tough conditions. They do not lose their magnetic properties, until the Curie temperature is exceeded, which for neodymium magnets is around 80°C. They are more resistant to loss of magnetism than traditional ferrite magnets. Because of this, they are ideal for applications in the automotive industry, robotics, and devices requiring operation in changing or extreme environmental conditions.
A neodymium magnet of class N52 and N50 is a powerful and strong magnetic product with the shape of a ring, that provides high force and versatile application. Good price, 24h delivery, durability and broad range of uses.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their tremendous magnetic power, neodymium magnets offer the following advantages:

  • Their strength remains stable, and after around 10 years, it drops only by ~1% (according to research),
  • They show exceptional resistance to demagnetization from external field exposure,
  • Thanks to the shiny finish and gold coating, they have an visually attractive appearance,
  • Magnetic induction on the surface of these magnets is very strong,
  • These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to build),
  • Thanks to the flexibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in various configurations, which increases their functional possibilities,
  • Significant impact in new technology industries – they find application in HDDs, electric motors, diagnostic apparatus or even other advanced devices,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage while also reinforces its overall durability,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of protective material for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing threads directly in the magnet,
  • Possible threat related to magnet particles may arise, if ingested accidentally, which is important in the health of young users. Additionally, small elements from these devices can complicate medical imaging after being swallowed,
  • High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications

Maximum holding power of the magnet – what it depends on?

The given holding capacity of the magnet corresponds to the highest holding force, measured under optimal conditions, namely:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • in conditions of no clearance
  • in a perpendicular direction of force
  • at room temperature

Practical aspects of lifting capacity – factors

In practice, the holding capacity of a magnet is conditioned by the following aspects, in descending order of importance:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured using a steel plate with a smooth surface of suitable thickness (min. 20 mm), under perpendicular detachment force, however under parallel forces the lifting capacity is smaller. Moreover, even a small distance {between} the magnet and the plate lowers the lifting capacity.

Caution with Neodymium Magnets

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Neodymium magnets will jump and also touch together within a distance of several to almost 10 cm from each other.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

  Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their strength can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Neodymium magnets can become demagnetized at high temperatures.

Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Neodymium magnetic are highly susceptible to damage, leading to their cracking.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Be careful!

In order to show why neodymium magnets are so dangerous, see the article - How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98