MP 5x2.7/1.2x5 C / N38 - ring magnet
ring magnet
Catalog no 030201
GTIN/EAN: 5906301812180
Diameter
5 mm [±0,1 mm]
internal diameter Ø
2.7/1.2 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
0.69 g
Magnetization Direction
↑ axial
Load capacity
0.75 kg / 7.31 N
Magnetic Induction
553.14 mT / 5531 Gs
Coating
[NiCuNi] Nickel
0.836 ZŁ with VAT / pcs + price for transport
0.680 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 888 99 98 98
if you prefer let us know by means of
our online form
our website.
Parameters as well as structure of a neodymium magnet can be tested with our
modular calculator.
Same-day processing for orders placed before 14:00.
Technical specification - MP 5x2.7/1.2x5 C / N38 - ring magnet
Specification / characteristics - MP 5x2.7/1.2x5 C / N38 - ring magnet
| properties | values |
|---|---|
| Cat. no. | 030201 |
| GTIN/EAN | 5906301812180 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter | 5 mm [±0,1 mm] |
| internal diameter Ø | 2.7/1.2 mm [±0,1 mm] |
| Height | 5 mm [±0,1 mm] |
| Weight | 0.69 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.75 kg / 7.31 N |
| Magnetic Induction ~ ? | 553.14 mT / 5531 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical analysis of the magnet - technical parameters
Presented information are the outcome of a physical analysis. Results rely on models for the class Nd2Fe14B. Real-world conditions might slightly differ. Please consider these calculations as a reference point during assembly planning.
Table 1: Static pull force (pull vs gap) - interaction chart
MP 5x2.7/1.2x5 C / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
5322 Gs
532.2 mT
|
0.75 kg / 1.65 lbs
750.0 g / 7.4 N
|
safe |
| 1 mm |
3295 Gs
329.5 mT
|
0.29 kg / 0.63 lbs
287.5 g / 2.8 N
|
safe |
| 2 mm |
1883 Gs
188.3 mT
|
0.09 kg / 0.21 lbs
93.9 g / 0.9 N
|
safe |
| 3 mm |
1098 Gs
109.8 mT
|
0.03 kg / 0.07 lbs
31.9 g / 0.3 N
|
safe |
| 5 mm |
440 Gs
44.0 mT
|
0.01 kg / 0.01 lbs
5.1 g / 0.1 N
|
safe |
| 10 mm |
92 Gs
9.2 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
safe |
| 15 mm |
33 Gs
3.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
| 20 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
| 30 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
Table 2: Vertical hold (vertical surface)
MP 5x2.7/1.2x5 C / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
150.0 g / 1.5 N
|
| 1 mm | Stal (~0.2) |
0.06 kg / 0.13 lbs
58.0 g / 0.6 N
|
| 2 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
18.0 g / 0.2 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (shearing) - vertical pull
MP 5x2.7/1.2x5 C / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.22 kg / 0.50 lbs
225.0 g / 2.2 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.15 kg / 0.33 lbs
150.0 g / 1.5 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.08 kg / 0.17 lbs
75.0 g / 0.7 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.38 kg / 0.83 lbs
375.0 g / 3.7 N
|
Table 4: Material efficiency (saturation) - sheet metal selection
MP 5x2.7/1.2x5 C / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.08 kg / 0.17 lbs
75.0 g / 0.7 N
|
| 1 mm |
|
0.19 kg / 0.41 lbs
187.5 g / 1.8 N
|
| 2 mm |
|
0.38 kg / 0.83 lbs
375.0 g / 3.7 N
|
| 3 mm |
|
0.56 kg / 1.24 lbs
562.5 g / 5.5 N
|
| 5 mm |
|
0.75 kg / 1.65 lbs
750.0 g / 7.4 N
|
| 10 mm |
|
0.75 kg / 1.65 lbs
750.0 g / 7.4 N
|
| 11 mm |
|
0.75 kg / 1.65 lbs
750.0 g / 7.4 N
|
| 12 mm |
|
0.75 kg / 1.65 lbs
750.0 g / 7.4 N
|
Table 5: Working in heat (material behavior) - power drop
MP 5x2.7/1.2x5 C / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.75 kg / 1.65 lbs
750.0 g / 7.4 N
|
OK |
| 40 °C | -2.2% |
0.73 kg / 1.62 lbs
733.5 g / 7.2 N
|
OK |
| 60 °C | -4.4% |
0.72 kg / 1.58 lbs
717.0 g / 7.0 N
|
OK |
| 80 °C | -6.6% |
0.70 kg / 1.54 lbs
700.5 g / 6.9 N
|
|
| 100 °C | -28.8% |
0.53 kg / 1.18 lbs
534.0 g / 5.2 N
|
Table 6: Magnet-Magnet interaction (repulsion) - field collision
MP 5x2.7/1.2x5 C / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.75 kg / 6.06 lbs
5 924 Gs
|
0.41 kg / 0.91 lbs
412 g / 4.0 N
|
N/A |
| 1 mm |
1.77 kg / 3.90 lbs
8 541 Gs
|
0.27 kg / 0.58 lbs
265 g / 2.6 N
|
1.59 kg / 3.51 lbs
~0 Gs
|
| 2 mm |
1.05 kg / 2.32 lbs
6 590 Gs
|
0.16 kg / 0.35 lbs
158 g / 1.5 N
|
0.95 kg / 2.09 lbs
~0 Gs
|
| 3 mm |
0.60 kg / 1.33 lbs
4 992 Gs
|
0.09 kg / 0.20 lbs
91 g / 0.9 N
|
0.54 kg / 1.20 lbs
~0 Gs
|
| 5 mm |
0.20 kg / 0.44 lbs
2 860 Gs
|
0.03 kg / 0.07 lbs
30 g / 0.3 N
|
0.18 kg / 0.39 lbs
~0 Gs
|
| 10 mm |
0.02 kg / 0.04 lbs
880 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
184 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
16 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
10 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
6 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
4 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Protective zones (implants) - warnings
MP 5x2.7/1.2x5 C / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 3.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 2.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 2.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 1.5 cm |
| Remote | 50 Gs (5.0 mT) | 1.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Impact energy (kinetic energy) - collision effects
MP 5x2.7/1.2x5 C / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
33.26 km/h
(9.24 m/s)
|
0.03 J | |
| 30 mm |
57.59 km/h
(16.00 m/s)
|
0.09 J | |
| 50 mm |
74.35 km/h
(20.65 m/s)
|
0.15 J | |
| 100 mm |
105.14 km/h
(29.21 m/s)
|
0.29 J |
Table 9: Surface protection spec
MP 5x2.7/1.2x5 C / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Flux)
MP 5x2.7/1.2x5 C / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 862 Mx | 8.6 µWb |
| Pc Coefficient | 0.83 | High (Stable) |
Table 11: Underwater work (magnet fishing)
MP 5x2.7/1.2x5 C / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.75 kg | Standard |
| Water (riverbed) |
0.86 kg
(+0.11 kg buoyancy gain)
|
+14.5% |
1. Shear force
*Warning: On a vertical wall, the magnet retains only ~20% of its perpendicular strength.
2. Steel thickness impact
*Thin steel (e.g. 0.5mm PC case) severely limits the holding force.
3. Power loss vs temp
*For standard magnets, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.83
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other offers
Pros and cons of neodymium magnets.
Advantages
- They virtually do not lose power, because even after 10 years the decline in efficiency is only ~1% (according to literature),
- They are noted for resistance to demagnetization induced by external disturbances,
- By applying a lustrous layer of nickel, the element acquires an modern look,
- Neodymium magnets generate maximum magnetic induction on a small surface, which increases force concentration,
- Through (adequate) combination of ingredients, they can achieve high thermal strength, allowing for action at temperatures approaching 230°C and above...
- Possibility of accurate shaping as well as adapting to defined conditions,
- Huge importance in high-tech industry – they are used in hard drives, motor assemblies, medical equipment, also multitasking production systems.
- Compactness – despite small sizes they generate large force, making them ideal for precision applications
Weaknesses
- Brittleness is one of their disadvantages. Upon intense impact they can fracture. We recommend keeping them in a special holder, which not only protects them against impacts but also increases their durability
- NdFeB magnets lose force when exposed to high temperatures. After reaching 80°C, many of them experience permanent drop of power (a factor is the shape as well as dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are very resistant to heat
- Magnets exposed to a humid environment can corrode. Therefore while using outdoors, we advise using water-impermeable magnets made of rubber, plastic or other material protecting against moisture
- Due to limitations in realizing threads and complicated shapes in magnets, we propose using cover - magnetic mount.
- Potential hazard related to microscopic parts of magnets pose a threat, when accidentally swallowed, which becomes key in the context of child safety. Furthermore, tiny parts of these magnets are able to be problematic in diagnostics medical in case of swallowing.
- With mass production the cost of neodymium magnets can be a barrier,
Holding force characteristics
Magnetic strength at its maximum – what affects it?
- on a base made of structural steel, effectively closing the magnetic field
- whose transverse dimension equals approx. 10 mm
- characterized by even structure
- under conditions of no distance (surface-to-surface)
- during detachment in a direction perpendicular to the mounting surface
- at ambient temperature room level
What influences lifting capacity in practice
- Air gap (betwixt the magnet and the metal), because even a very small clearance (e.g. 0.5 mm) can cause a reduction in force by up to 50% (this also applies to paint, corrosion or debris).
- Angle of force application – highest force is available only during perpendicular pulling. The shear force of the magnet along the plate is typically several times smaller (approx. 1/5 of the lifting capacity).
- Element thickness – to utilize 100% power, the steel must be sufficiently thick. Thin sheet restricts the attraction force (the magnet "punches through" it).
- Steel grade – the best choice is pure iron steel. Cast iron may attract less.
- Surface structure – the more even the surface, the larger the contact zone and stronger the hold. Roughness creates an air distance.
- Heat – neodymium magnets have a sensitivity to temperature. When it is hot they are weaker, and in frost they can be stronger (up to a certain limit).
Lifting capacity was determined with the use of a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, however under attempts to slide the magnet the lifting capacity is smaller. In addition, even a minimal clearance between the magnet and the plate lowers the holding force.
Precautions when working with neodymium magnets
GPS and phone interference
A strong magnetic field disrupts the operation of compasses in smartphones and navigation systems. Keep magnets near a smartphone to prevent damaging the sensors.
Warning for heart patients
For implant holders: Strong magnetic fields disrupt electronics. Keep at least 30 cm distance or request help to handle the magnets.
Handling guide
Handle magnets with awareness. Their huge power can shock even experienced users. Stay alert and respect their force.
Nickel allergy
Some people suffer from a contact allergy to nickel, which is the common plating for neodymium magnets. Prolonged contact may cause dermatitis. We suggest wear safety gloves.
Fire warning
Machining of NdFeB material poses a fire hazard. Neodymium dust reacts violently with oxygen and is difficult to extinguish.
This is not a toy
Adult use only. Tiny parts pose a choking risk, leading to serious injuries. Keep away from children and animals.
Serious injuries
Protect your hands. Two powerful magnets will snap together immediately with a force of massive weight, destroying everything in their path. Exercise extreme caution!
Data carriers
Powerful magnetic fields can erase data on payment cards, hard drives, and other magnetic media. Maintain a gap of min. 10 cm.
Power loss in heat
Standard neodymium magnets (grade N) lose magnetization when the temperature exceeds 80°C. This process is irreversible.
Shattering risk
Despite the nickel coating, neodymium is delicate and not impact-resistant. Do not hit, as the magnet may shatter into hazardous fragments.
