Neodymium magnets – strongest on the market

Need reliable magnetic field? We offer rich assortment of various shapes and sizes. Perfect for for domestic applications, workshop and model making. See products with fast shipping.

discover magnet catalog

Magnet fishing sets (searchers)

Discover your passion with treasure salvaging! Our specialized grips (F200, F400) provide grip certainty and immense power. Stainless steel construction and reinforced ropes are reliable in rivers and lakes.

choose your set

Industrial magnetic grips mounting

Reliable solutions for mounting without drilling. Threaded mounts (external or internal) provide instant organization of work on warehouses. They are indispensable installing lighting, sensors and banners.

see industrial applications

🚀 Express processing: orders by 14:00 shipped immediately!

Dhit sp. z o.o.
Product available Ships tomorrow

MP 5x2.7/1.2x5 C / N38 - ring magnet

ring magnet

Catalog no 030201

GTIN/EAN: 5906301812180

5.00

Diameter

5 mm [±0,1 mm]

internal diameter Ø

2.7/1.2 mm [±0,1 mm]

Height

5 mm [±0,1 mm]

Weight

0.69 g

Magnetization Direction

↑ axial

Load capacity

0.75 kg / 7.31 N

Magnetic Induction

553.14 mT / 5531 Gs

Coating

[NiCuNi] Nickel

0.836 with VAT / pcs + price for transport

0.680 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.680 ZŁ
0.836 ZŁ
price from 900 pcs
0.639 ZŁ
0.786 ZŁ
price from 3700 pcs
0.598 ZŁ
0.736 ZŁ
Can't decide what to choose?

Give us a call +48 888 99 98 98 otherwise get in touch via form our website.
Strength and form of a neodymium magnet can be analyzed with our modular calculator.

Order by 14:00 and we’ll ship today!

Technical parameters - MP 5x2.7/1.2x5 C / N38 - ring magnet

Specification / characteristics - MP 5x2.7/1.2x5 C / N38 - ring magnet

properties
properties values
Cat. no. 030201
GTIN/EAN 5906301812180
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
Diameter 5 mm [±0,1 mm]
internal diameter Ø 2.7/1.2 mm [±0,1 mm]
Height 5 mm [±0,1 mm]
Weight 0.69 g
Magnetization Direction ↑ axial
Load capacity ~ ? 0.75 kg / 7.31 N
Magnetic Induction ~ ? 553.14 mT / 5531 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MP 5x2.7/1.2x5 C / N38 - ring magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Physical modeling of the magnet - technical parameters

These information represent the direct effect of a mathematical analysis. Results are based on algorithms for the material Nd2Fe14B. Actual parameters may differ from theoretical values. Please consider these calculations as a reference point when designing systems.

Table 1: Static pull force (force vs gap) - interaction chart
MP 5x2.7/1.2x5 C / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 5322 Gs
532.2 mT
0.75 kg / 1.65 lbs
750.0 g / 7.4 N
safe
1 mm 3295 Gs
329.5 mT
0.29 kg / 0.63 lbs
287.5 g / 2.8 N
safe
2 mm 1883 Gs
188.3 mT
0.09 kg / 0.21 lbs
93.9 g / 0.9 N
safe
3 mm 1098 Gs
109.8 mT
0.03 kg / 0.07 lbs
31.9 g / 0.3 N
safe
5 mm 440 Gs
44.0 mT
0.01 kg / 0.01 lbs
5.1 g / 0.1 N
safe
10 mm 92 Gs
9.2 mT
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
safe
15 mm 33 Gs
3.3 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
safe
20 mm 15 Gs
1.5 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
safe
30 mm 5 Gs
0.5 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
safe
50 mm 1 Gs
0.1 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
safe

Table 2: Sliding force (wall)
MP 5x2.7/1.2x5 C / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 0.15 kg / 0.33 lbs
150.0 g / 1.5 N
1 mm Stal (~0.2) 0.06 kg / 0.13 lbs
58.0 g / 0.6 N
2 mm Stal (~0.2) 0.02 kg / 0.04 lbs
18.0 g / 0.2 N
3 mm Stal (~0.2) 0.01 kg / 0.01 lbs
6.0 g / 0.1 N
5 mm Stal (~0.2) 0.00 kg / 0.00 lbs
2.0 g / 0.0 N
10 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Table 3: Wall mounting (sliding) - behavior on slippery surfaces
MP 5x2.7/1.2x5 C / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
0.22 kg / 0.50 lbs
225.0 g / 2.2 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
0.15 kg / 0.33 lbs
150.0 g / 1.5 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
0.08 kg / 0.17 lbs
75.0 g / 0.7 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
0.38 kg / 0.83 lbs
375.0 g / 3.7 N

Table 4: Steel thickness (saturation) - sheet metal selection
MP 5x2.7/1.2x5 C / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
10%
0.08 kg / 0.17 lbs
75.0 g / 0.7 N
1 mm
25%
0.19 kg / 0.41 lbs
187.5 g / 1.8 N
2 mm
50%
0.38 kg / 0.83 lbs
375.0 g / 3.7 N
3 mm
75%
0.56 kg / 1.24 lbs
562.5 g / 5.5 N
5 mm
100%
0.75 kg / 1.65 lbs
750.0 g / 7.4 N
10 mm
100%
0.75 kg / 1.65 lbs
750.0 g / 7.4 N
11 mm
100%
0.75 kg / 1.65 lbs
750.0 g / 7.4 N
12 mm
100%
0.75 kg / 1.65 lbs
750.0 g / 7.4 N

Table 5: Working in heat (stability) - thermal limit
MP 5x2.7/1.2x5 C / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 0.75 kg / 1.65 lbs
750.0 g / 7.4 N
OK
40 °C -2.2% 0.73 kg / 1.62 lbs
733.5 g / 7.2 N
OK
60 °C -4.4% 0.72 kg / 1.58 lbs
717.0 g / 7.0 N
OK
80 °C -6.6% 0.70 kg / 1.54 lbs
700.5 g / 6.9 N
100 °C -28.8% 0.53 kg / 1.18 lbs
534.0 g / 5.2 N

Table 6: Two magnets (attraction) - field collision
MP 5x2.7/1.2x5 C / N38

Gap (mm) Attraction (kg/lbs) (N-S) Shear Strength (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 2.75 kg / 6.06 lbs
5 924 Gs
0.41 kg / 0.91 lbs
412 g / 4.0 N
N/A
1 mm 1.77 kg / 3.90 lbs
8 541 Gs
0.27 kg / 0.58 lbs
265 g / 2.6 N
1.59 kg / 3.51 lbs
~0 Gs
2 mm 1.05 kg / 2.32 lbs
6 590 Gs
0.16 kg / 0.35 lbs
158 g / 1.5 N
0.95 kg / 2.09 lbs
~0 Gs
3 mm 0.60 kg / 1.33 lbs
4 992 Gs
0.09 kg / 0.20 lbs
91 g / 0.9 N
0.54 kg / 1.20 lbs
~0 Gs
5 mm 0.20 kg / 0.44 lbs
2 860 Gs
0.03 kg / 0.07 lbs
30 g / 0.3 N
0.18 kg / 0.39 lbs
~0 Gs
10 mm 0.02 kg / 0.04 lbs
880 Gs
0.00 kg / 0.01 lbs
3 g / 0.0 N
0.02 kg / 0.04 lbs
~0 Gs
20 mm 0.00 kg / 0.00 lbs
184 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
16 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
10 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
6 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
4 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
3 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
2 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Table 7: Hazards (implants) - warnings
MP 5x2.7/1.2x5 C / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 3.0 cm
Hearing aid 10 Gs (1.0 mT) 2.5 cm
Timepiece 20 Gs (2.0 mT) 2.0 cm
Mobile device 40 Gs (4.0 mT) 1.5 cm
Car key 50 Gs (5.0 mT) 1.5 cm
Payment card 400 Gs (40.0 mT) 1.0 cm
HDD hard drive 600 Gs (60.0 mT) 0.5 cm

Table 8: Collisions (cracking risk) - warning
MP 5x2.7/1.2x5 C / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 33.26 km/h
(9.24 m/s)
0.03 J
30 mm 57.59 km/h
(16.00 m/s)
0.09 J
50 mm 74.35 km/h
(20.65 m/s)
0.15 J
100 mm 105.14 km/h
(29.21 m/s)
0.29 J

Table 9: Corrosion resistance
MP 5x2.7/1.2x5 C / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Construction data (Pc)
MP 5x2.7/1.2x5 C / N38

Parameter Value SI Unit / Description
Magnetic Flux 862 Mx 8.6 µWb
Pc Coefficient 0.83 High (Stable)

Table 11: Hydrostatics and buoyancy
MP 5x2.7/1.2x5 C / N38

Environment Effective steel pull Effect
Air (land) 0.75 kg Standard
Water (riverbed) 0.86 kg
(+0.11 kg buoyancy gain)
+14.5%
Corrosion warning: This magnet has a standard nickel coating. After use in water, it must be dried and maintained immediately, otherwise it will rust!
1. Sliding resistance

*Warning: On a vertical wall, the magnet holds merely approx. 20-30% of its nominal pull.

2. Steel saturation

*Thin metal sheet (e.g. 0.5mm PC case) drastically limits the holding force.

3. Thermal stability

*For standard magnets, the safety limit is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.83

This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Technical specification and ecology
Chemical composition
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Environmental data
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 030201-2026
Measurement Calculator
Magnet pull force

Magnetic Field

Other proposals

It is ideally suited for places where solid attachment of the magnet to the substrate is required without the risk of detachment. Thanks to the hole (often for a screw), this model enables quick installation to wood, wall, plastic, or metal. It is also often used in advertising for fixing signs and in workshops for organizing tools.
This is a crucial issue when working with model MP 5x2.7/1.2x5 C / N38. Neodymium magnets are sintered ceramics, which means they are hard but breakable and inelastic. One turn too many can destroy the magnet, so do it slowly. It's a good idea to use a rubber spacer under the screw head, which will cushion the stresses. Remember: cracking during assembly results from material properties, not a product defect.
Moisture can penetrate micro-cracks in the coating and cause oxidation of the magnet. Damage to the protective layer during assembly is the most common cause of rusting. This product is dedicated for indoor use. For outdoor applications, we recommend choosing magnets in hermetic housing or additional protection with varnish.
A screw or bolt with a thread diameter smaller than 2.7/1.2 mm fits this model. For magnets with a straight hole, a conical head can act like a wedge and burst the magnet. Always check that the screw head is not larger than the outer diameter of the magnet (5 mm), so it doesn't protrude beyond the outline.
This model is characterized by dimensions Ø5x5 mm and a weight of 0.69 g. The pulling force of this model is an impressive 0.75 kg, which translates to 7.31 N in newtons. The mounting hole diameter is precisely 2.7/1.2 mm.
These magnets are magnetized axially (through the thickness), which means one flat side is the N pole and the other is S. In the case of connecting two rings, make sure one is turned the right way. We do not offer paired sets with marked poles in this category, but they are easy to match manually.

Strengths and weaknesses of Nd2Fe14B magnets.

Benefits

Besides their remarkable strength, neodymium magnets offer the following advantages:
  • They have stable power, and over more than ten years their attraction force decreases symbolically – ~1% (according to theory),
  • They possess excellent resistance to magnetism drop when exposed to external magnetic sources,
  • By applying a lustrous layer of gold, the element gains an nice look,
  • Neodymium magnets create maximum magnetic induction on a their surface, which allows for strong attraction,
  • Thanks to resistance to high temperature, they are able to function (depending on the form) even at temperatures up to 230°C and higher...
  • Thanks to modularity in designing and the ability to modify to complex applications,
  • Key role in high-tech industry – they are utilized in hard drives, electromotive mechanisms, precision medical tools, as well as technologically advanced constructions.
  • Thanks to their power density, small magnets offer high operating force, occupying minimum space,

Weaknesses

Disadvantages of NdFeB magnets:
  • Brittleness is one of their disadvantages. Upon strong impact they can fracture. We advise keeping them in a steel housing, which not only secures them against impacts but also raises their durability
  • Neodymium magnets decrease their strength under the influence of heating. As soon as 80°C is exceeded, many of them start losing their power. Therefore, we recommend our special magnets marked [AH], which maintain stability even at temperatures up to 230°C
  • Magnets exposed to a humid environment can rust. Therefore when using outdoors, we advise using water-impermeable magnets made of rubber, plastic or other material resistant to moisture
  • Limited ability of making nuts in the magnet and complicated shapes - preferred is casing - mounting mechanism.
  • Possible danger related to microscopic parts of magnets pose a threat, when accidentally swallowed, which gains importance in the aspect of protecting the youngest. Furthermore, tiny parts of these devices can be problematic in diagnostics medical after entering the body.
  • With budget limitations the cost of neodymium magnets can be a barrier,

Pull force analysis

Breakaway strength of the magnet in ideal conditionswhat it depends on?

The declared magnet strength concerns the limit force, recorded under laboratory conditions, specifically:
  • on a plate made of mild steel, perfectly concentrating the magnetic flux
  • whose transverse dimension equals approx. 10 mm
  • characterized by lack of roughness
  • under conditions of gap-free contact (surface-to-surface)
  • for force applied at a right angle (in the magnet axis)
  • at room temperature

Practical aspects of lifting capacity – factors

Holding efficiency impacted by specific conditions, mainly (from most important):
  • Distance – existence of foreign body (rust, tape, air) interrupts the magnetic circuit, which reduces capacity rapidly (even by 50% at 0.5 mm).
  • Load vector – maximum parameter is reached only during perpendicular pulling. The shear force of the magnet along the surface is standardly many times smaller (approx. 1/5 of the lifting capacity).
  • Wall thickness – thin material does not allow full use of the magnet. Magnetic flux penetrates through instead of generating force.
  • Steel grade – ideal substrate is pure iron steel. Stainless steels may generate lower lifting capacity.
  • Base smoothness – the smoother and more polished the surface, the larger the contact zone and stronger the hold. Unevenness acts like micro-gaps.
  • Temperature – heating the magnet results in weakening of induction. It is worth remembering the maximum operating temperature for a given model.

Lifting capacity was determined using a smooth steel plate of optimal thickness (min. 20 mm), under perpendicular detachment force, whereas under attempts to slide the magnet the load capacity is reduced by as much as 75%. Moreover, even a small distance between the magnet and the plate lowers the holding force.

Precautions when working with neodymium magnets
Serious injuries

Protect your hands. Two large magnets will join immediately with a force of several hundred kilograms, crushing anything in their path. Be careful!

Magnetic media

Avoid bringing magnets near a purse, laptop, or TV. The magnetic field can destroy these devices and wipe information from cards.

Keep away from children

Strictly store magnets out of reach of children. Risk of swallowing is high, and the consequences of magnets clamping inside the body are life-threatening.

Compass and GPS

GPS units and mobile phones are highly susceptible to magnetic fields. Close proximity with a strong magnet can ruin the sensors in your phone.

Beware of splinters

Despite the nickel coating, the material is brittle and cannot withstand shocks. Do not hit, as the magnet may shatter into sharp, dangerous pieces.

Do not overheat magnets

Regular neodymium magnets (grade N) lose power when the temperature exceeds 80°C. This process is irreversible.

Do not underestimate power

Handle with care. Neodymium magnets attract from a distance and snap with massive power, often quicker than you can react.

Nickel allergy

It is widely known that the nickel plating (standard magnet coating) is a common allergen. For allergy sufferers, prevent touching magnets with bare hands or opt for coated magnets.

Flammability

Powder created during cutting of magnets is combustible. Do not drill into magnets without proper cooling and knowledge.

ICD Warning

Medical warning: Strong magnets can turn off pacemakers and defibrillators. Do not approach if you have medical devices.

Security! More info about hazards in the article: Magnet Safety Guide.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98