MP 5x2.7/1.2x5 C / N38 - ring magnet
ring magnet
Catalog no 030201
GTIN: 5906301812180
Diameter
5 mm [±0,1 mm]
internal diameter Ø
2.7/1.2 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
0.69 g
Magnetization Direction
↑ axial
Load capacity
0.75 kg / 7.31 N
Magnetic Induction
553.14 mT / 5531 Gs
Coating
[NiCuNi] Nickel
0.836 ZŁ with VAT / pcs + price for transport
0.680 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Do you have trouble choosing?
Call us
+48 22 499 98 98
or send us a note via
contact form
the contact section.
Parameters and shape of magnetic components can be reviewed on our
magnetic calculator.
Order by 14:00 and we’ll ship today!
MP 5x2.7/1.2x5 C / N38 - ring magnet
Specification / characteristics MP 5x2.7/1.2x5 C / N38 - ring magnet
| properties | values |
|---|---|
| Cat. no. | 030201 |
| GTIN | 5906301812180 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter | 5 mm [±0,1 mm] |
| internal diameter Ø | 2.7/1.2 mm [±0,1 mm] |
| Height | 5 mm [±0,1 mm] |
| Weight | 0.69 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.75 kg / 7.31 N |
| Magnetic Induction ~ ? | 553.14 mT / 5531 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remenance Br [Min. - Max.] ? | 1220-1260 | T |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [Min. - Max.] ? | 36-38 | BH max MGOe |
| energy density [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅Cm |
| Bending strength | 250 | Mpa |
| Compressive strength | 1000~1100 | Mpa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 106 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical modeling of the magnet - data
The following values represent the outcome of a physical analysis. Values are based on models for the class Nd2Fe14B. Operational conditions might slightly differ from theoretical values. Please consider these calculations as a preliminary roadmap for designers.
MP 5x2.7/1.2x5 C / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg) | Risk Status |
|---|---|---|---|
| 0 mm |
5322 Gs
532.2 mT
|
0.75 kg / 750.0 g
7.4 N
|
safe |
| 1 mm |
3295 Gs
329.5 mT
|
0.29 kg / 287.5 g
2.8 N
|
safe |
| 2 mm |
1883 Gs
188.3 mT
|
0.09 kg / 93.9 g
0.9 N
|
safe |
| 3 mm |
1098 Gs
109.8 mT
|
0.03 kg / 31.9 g
0.3 N
|
safe |
| 5 mm |
440 Gs
44.0 mT
|
0.01 kg / 5.1 g
0.1 N
|
safe |
| 10 mm |
92 Gs
9.2 mT
|
0.00 kg / 0.2 g
0.0 N
|
safe |
| 15 mm |
33 Gs
3.3 mT
|
0.00 kg / 0.0 g
0.0 N
|
safe |
| 20 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
safe |
| 30 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
safe |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
safe |
MP 5x2.7/1.2x5 C / N38
| Distance (mm) | Friction coefficient | Pull Force (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.15 kg / 150.0 g
1.5 N
|
| 1 mm | Stal (~0.2) |
0.06 kg / 58.0 g
0.6 N
|
| 2 mm | Stal (~0.2) |
0.02 kg / 18.0 g
0.2 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MP 5x2.7/1.2x5 C / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.22 kg / 225.0 g
2.2 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.15 kg / 150.0 g
1.5 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.08 kg / 75.0 g
0.7 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.38 kg / 375.0 g
3.7 N
|
MP 5x2.7/1.2x5 C / N38
| Steel thickness (mm) | % power | Real pull force (kg) |
|---|---|---|
| 0.5 mm |
|
0.08 kg / 75.0 g
0.7 N
|
| 1 mm |
|
0.19 kg / 187.5 g
1.8 N
|
| 2 mm |
|
0.38 kg / 375.0 g
3.7 N
|
| 5 mm |
|
0.75 kg / 750.0 g
7.4 N
|
| 10 mm |
|
0.75 kg / 750.0 g
7.4 N
|
MP 5x2.7/1.2x5 C / N38
| Ambient temp. (°C) | Power loss | Remaining pull | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.75 kg / 750.0 g
7.4 N
|
OK |
| 40 °C | -2.2% |
0.73 kg / 733.5 g
7.2 N
|
OK |
| 60 °C | -4.4% |
0.72 kg / 717.0 g
7.0 N
|
OK |
| 80 °C | -6.6% |
0.70 kg / 700.5 g
6.9 N
|
|
| 100 °C | -28.8% |
0.53 kg / 534.0 g
5.2 N
|
MP 5x2.7/1.2x5 C / N38
| Gap (mm) | Attraction (kg) (N-S) | Repulsion (kg) (N-N) |
|---|---|---|
| 0 mm |
2.75 kg / 2747 g
26.9 N
5 924 Gs
|
N/A |
| 1 mm |
1.77 kg / 1768 g
17.3 N
8 541 Gs
|
1.59 kg / 1592 g
15.6 N
~0 Gs
|
| 2 mm |
1.05 kg / 1053 g
10.3 N
6 590 Gs
|
0.95 kg / 948 g
9.3 N
~0 Gs
|
| 3 mm |
0.60 kg / 604 g
5.9 N
4 992 Gs
|
0.54 kg / 544 g
5.3 N
~0 Gs
|
| 5 mm |
0.20 kg / 198 g
1.9 N
2 860 Gs
|
0.18 kg / 178 g
1.8 N
~0 Gs
|
| 10 mm |
0.02 kg / 19 g
0.2 N
880 Gs
|
0.02 kg / 17 g
0.2 N
~0 Gs
|
| 20 mm |
0.00 kg / 1 g
0.0 N
184 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
16 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MP 5x2.7/1.2x5 C / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 3.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 2.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 2.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 1.5 cm |
| Car key | 50 Gs (5.0 mT) | 1.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
MP 5x2.7/1.2x5 C / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
33.26 km/h
(9.24 m/s)
|
0.03 J | |
| 30 mm |
57.59 km/h
(16.00 m/s)
|
0.09 J | |
| 50 mm |
74.35 km/h
(20.65 m/s)
|
0.15 J | |
| 100 mm |
105.14 km/h
(29.21 m/s)
|
0.29 J |
MP 5x2.7/1.2x5 C / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
MP 5x2.7/1.2x5 C / N38
| Parameter | Value | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 862 Mx | 8.6 µWb |
| Współczynnik Pc | 0.83 | Wysoki (Stabilny) |
MP 5x2.7/1.2x5 C / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.75 kg | Standard |
| Water (riverbed) |
0.86 kg
(+0.11 kg Buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Note: On a vertical wall, the magnet retains merely approx. 20-30% of its max power.
2. Steel thickness impact
*Thin steel (e.g. computer case) drastically limits the holding force.
3. Power loss vs temp
*For standard magnets, the max working temp is 80°C.
Other proposals
Advantages as well as disadvantages of rare earth magnets.
Benefits
- Their strength remains stable, and after around 10 years it decreases only by ~1% (according to research),
- They do not lose their magnetic properties even under close interference source,
- In other words, due to the glossy layer of gold, the element gains a professional look,
- They show high magnetic induction at the operating surface, making them more effective,
- Due to their durability and thermal resistance, neodymium magnets can operate (depending on the form) even at high temperatures reaching 230°C or more...
- Thanks to versatility in constructing and the capacity to modify to specific needs,
- Versatile presence in electronics industry – they are used in mass storage devices, electric motors, medical devices, and multitasking production systems.
- Relatively small size with high pulling force – neodymium magnets offer strong magnetic field in tiny dimensions, which allows their use in small systems
Limitations
- To avoid cracks upon strong impacts, we suggest using special steel holders. Such a solution protects the magnet and simultaneously increases its durability.
- Neodymium magnets lose their power under the influence of heating. As soon as 80°C is exceeded, many of them start losing their force. Therefore, we recommend our special magnets marked [AH], which maintain stability even at temperatures up to 230°C
- Due to the susceptibility of magnets to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic or other material immune to moisture, when using outdoors
- Due to limitations in producing threads and complex shapes in magnets, we recommend using a housing - magnetic mechanism.
- Health risk related to microscopic parts of magnets pose a threat, when accidentally swallowed, which gains importance in the context of child safety. Furthermore, tiny parts of these magnets can disrupt the diagnostic process medical after entering the body.
- With budget limitations the cost of neodymium magnets is a challenge,
Holding force characteristics
Breakaway strength of the magnet in ideal conditions – what contributes to it?
- using a base made of high-permeability steel, acting as a circuit closing element
- whose transverse dimension is min. 10 mm
- with a surface perfectly flat
- with zero gap (without coatings)
- under vertical application of breakaway force (90-degree angle)
- in temp. approx. 20°C
Lifting capacity in practice – influencing factors
- Clearance – the presence of any layer (rust, dirt, air) acts as an insulator, which reduces power rapidly (even by 50% at 0.5 mm).
- Load vector – highest force is available only during pulling at a 90° angle. The resistance to sliding of the magnet along the plate is standardly several times smaller (approx. 1/5 of the lifting capacity).
- Element thickness – for full efficiency, the steel must be sufficiently thick. Thin sheet restricts the lifting capacity (the magnet "punches through" it).
- Metal type – not every steel reacts the same. High carbon content weaken the interaction with the magnet.
- Smoothness – ideal contact is possible only on polished steel. Rough texture create air cushions, reducing force.
- Thermal conditions – neodymium magnets have a sensitivity to temperature. When it is hot they are weaker, and in frost gain strength (up to a certain limit).
Holding force was checked on the plate surface of 20 mm thickness, when a perpendicular force was applied, in contrast under shearing force the holding force is lower. Moreover, even a slight gap between the magnet’s surface and the plate lowers the load capacity.
Pinching danger
Big blocks can break fingers in a fraction of a second. Never put your hand between two attracting surfaces.
Precision electronics
GPS units and mobile phones are extremely susceptible to magnetic fields. Direct contact with a powerful NdFeB magnet can ruin the sensors in your phone.
Power loss in heat
Regular neodymium magnets (N-type) lose power when the temperature exceeds 80°C. The loss of strength is permanent.
Fragile material
Watch out for shards. Magnets can explode upon uncontrolled impact, ejecting sharp fragments into the air. Eye protection is mandatory.
Data carriers
Equipment safety: Neodymium magnets can ruin data carriers and sensitive devices (pacemakers, medical aids, timepieces).
Powerful field
Handle with care. Rare earth magnets act from a distance and connect with huge force, often quicker than you can react.
Machining danger
Fire hazard: Rare earth powder is highly flammable. Do not process magnets in home conditions as this may cause fire.
This is not a toy
Product intended for adults. Tiny parts pose a choking risk, causing serious injuries. Store out of reach of children and animals.
Metal Allergy
Allergy Notice: The Ni-Cu-Ni coating contains nickel. If redness happens, cease working with magnets and wear gloves.
Warning for heart patients
For implant holders: Strong magnetic fields affect electronics. Maintain at least 30 cm distance or ask another person to work with the magnets.
