e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnets Nd2Fe14B - our proposal. Practically all "magnets" on our website are available for immediate delivery (check the list). See the magnet pricing for more details check the magnet price list

Magnet for fishing F400 GOLD

Where to buy strong magnet? Holders with magnets in airtight, solid steel enclosure are excellent for use in variable and difficult climate conditions, including snow and rain check...

magnets with holders

Holders with magnets can be applied to facilitate manufacturing, exploring underwater areas, or searching for meteorites made of ore read...

We promise to ship ordered magnets if the order is placed before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MP 5x2.7/1.2x5 C / N38 - ring magnet

ring magnet

Catalog no 030201

GTIN: 5906301812180

5

Diameter [±0,1 mm]

5 mm

internal diameter Ø [±0,1 mm]

2.7/1.2 mm

Height [±0,1 mm]

5 mm

Weight

3.59 g

Magnetization Direction

↑ axial

Load capacity

0.56 kg / 5.49 N

Magnetic Induction

56.04 mT

Coating

[NiCuNi] nickel

0.836 with VAT / pcs + price for transport

0.680 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.680 ZŁ
0.836 ZŁ
price from 900 pcs
0.639 ZŁ
0.786 ZŁ
price from 3700 pcs
0.598 ZŁ
0.736 ZŁ

Not sure which magnet to buy?

Contact us by phone +48 888 99 98 98 otherwise send us a note via contact form the contact page.
Parameters along with structure of a magnet can be analyzed using our power calculator.

Orders placed before 14:00 will be shipped the same business day.

MP 5x2.7/1.2x5 C / N38 - ring magnet

Specification/characteristics MP 5x2.7/1.2x5 C / N38 - ring magnet
properties
values
Cat. no.
030201
GTIN
5906301812180
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter
5 mm [±0,1 mm]
internal diameter Ø
2.7/1.2 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
3.59 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
0.56 kg / 5.49 N
Magnetic Induction ~ ?
56.04 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Due to specific properties, neodymium magnet MP 5x2.7/1.2x5 C / N38 in a ring-shaped form finds extensive use in various industries. Thanks to a powerful magnetic field of 0.56 kg, which can be described as force, they are extremely useful in applications that require high magnetic power in a compact space. Applications of MP 5x2.7/1.2x5 C / N38 magnets include electrical mechanisms, generators, audio systems, and many other devices that use magnets for producing motion or energy storage. Despite their powerful strength, they have a relatively low weight of 3.59 grams, which makes them more practical compared to heavier alternatives.
The operation of ring magnets results from their unique atomic structure. In the production process, neodymium atoms are arranged appropriately, which allows for the creation of a concentrated magnetic field in a specific direction. This makes them perfect for devices such as stepper motors or industrial robots. Additionally, ring magnets are resistant to demagnetization.
Ring magnets have a wide range of applications in many industries, such as production of electronic devices, such as speakers and electric motors, the automotive industry, e.g., in the construction of electric motors, and medical equipment, e.g., in scanning devices. Thanks to their temperature resistance and precision makes them ideal for technologically advanced applications.
Their uniqueness comes from extraordinary pulling power, resistance to high temperatures, precise control of the magnetic field. Thanks to their ring shape allows for application in devices requiring concentrated magnetic fields. Moreover, these magnets are more durable than traditional ferrite magnets, which has made them popular in advanced technologies and industrial applications.
Ring magnets perform excellently across a wide range of temperatures. They do not lose their magnetic properties, until the Curie temperature is exceeded, which for neodymium magnets is around 80°C. They are more resistant to loss of magnetism than traditional ferrite magnets. For this reason, they are ideal for applications in the automotive industry, robotics, and devices requiring operation in changing or extreme environmental conditions.
A neodymium ring magnet in classes N50 and N52 is a strong and powerful metal object designed as a ring, that offers high force and versatile application. Very good price, 24h delivery, resistance and multi-functionality.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their pulling strength, neodymium magnets provide the following advantages:

  • They virtually do not lose power, because even after ten years, the performance loss is only ~1% (based on calculations),
  • Their ability to resist magnetic interference from external fields is among the best,
  • Thanks to the polished finish and silver coating, they have an visually attractive appearance,
  • They possess intense magnetic force measurable at the magnet’s surface,
  • These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to profile),
  • The ability for precise shaping and adjustment to individual needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
  • Wide application in modern technologies – they are utilized in computer drives, rotating machines, diagnostic apparatus or even sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in tiny dimensions, which makes them ideal in miniature devices

Disadvantages of rare earth magnets:

  • They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to mechanical hits, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage and additionally enhances its overall resistance,
  • They lose field intensity at high temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to wet conditions can rust. Therefore, for outdoor applications, we recommend waterproof types made of non-metallic composites,
  • Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing complex structures directly in the magnet,
  • Potential hazard related to magnet particles may arise, in case of ingestion, which is notable in the health of young users. Furthermore, small elements from these magnets may hinder health screening if inside the body,
  • Due to a complex production process, their cost is considerably higher,

Maximum magnetic pulling forcewhat affects it?

The given strength of the magnet corresponds to the optimal strength, determined in the best circumstances, that is:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with no separation
  • with vertical force applied
  • in normal thermal conditions

Key elements affecting lifting force

Practical lifting force is determined by factors, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on the plate surface of 20 mm thickness, when the force acted perpendicularly, in contrast under parallel forces the holding force is lower. Moreover, even a minimal clearance {between} the magnet’s surface and the plate decreases the lifting capacity.

Be Cautious with Neodymium Magnets

  Magnets are not toys, children should not play with them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Neodymium magnets generate strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets can become demagnetized at high temperatures.

Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Neodymium magnets bounce and clash mutually within a distance of several to around 10 cm from each other.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their power can surprise you.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Neodymium magnetic are highly susceptible to damage, resulting in breaking.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Safety rules!

So you are aware of why neodymium magnets are so dangerous, see the article titled How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98