Neodymium magnets: strength you're looking for

Looking for massive power in small size? We offer wide selection of various shapes and sizes. Best choice for domestic applications, workshop and industrial tasks. See products in stock.

discover full offer

Equipment for treasure hunters

Start your adventure related to seabed exploration! Our specialized grips (F200, F400) provide safety guarantee and huge lifting capacity. Stainless steel construction and reinforced ropes will perform in rivers and lakes.

choose your water magnet

Industrial magnetic grips mounting

Professional solutions for mounting without drilling. Threaded mounts (external or internal) provide instant organization of work on production halls. They are indispensable mounting lighting, detectors and ads.

check available threads

📦 Fast shipping: buy by 14:00, we'll ship today!

Dhit sp. z o.o.
Product available Ships tomorrow

MP 5x2.7/1.2x5 C / N38 - ring magnet

ring magnet

Catalog no 030201

GTIN/EAN: 5906301812180

5.00

Diameter

5 mm [±0,1 mm]

internal diameter Ø

2.7/1.2 mm [±0,1 mm]

Height

5 mm [±0,1 mm]

Weight

0.69 g

Magnetization Direction

↑ axial

Load capacity

0.75 kg / 7.31 N

Magnetic Induction

553.14 mT / 5531 Gs

Coating

[NiCuNi] Nickel

0.836 with VAT / pcs + price for transport

0.680 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.680 ZŁ
0.836 ZŁ
price from 900 pcs
0.639 ZŁ
0.786 ZŁ
price from 3700 pcs
0.598 ZŁ
0.736 ZŁ
Hunting for a discount?

Give us a call +48 22 499 98 98 alternatively drop us a message by means of request form the contact section.
Strength as well as appearance of magnets can be analyzed on our magnetic mass calculator.

Order by 14:00 and we’ll ship today!

Technical - MP 5x2.7/1.2x5 C / N38 - ring magnet

Specification / characteristics - MP 5x2.7/1.2x5 C / N38 - ring magnet

properties
properties values
Cat. no. 030201
GTIN/EAN 5906301812180
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
Diameter 5 mm [±0,1 mm]
internal diameter Ø 2.7/1.2 mm [±0,1 mm]
Height 5 mm [±0,1 mm]
Weight 0.69 g
Magnetization Direction ↑ axial
Load capacity ~ ? 0.75 kg / 7.31 N
Magnetic Induction ~ ? 553.14 mT / 5531 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MP 5x2.7/1.2x5 C / N38 - ring magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Technical modeling of the product - report

The following values represent the result of a engineering analysis. Results rely on algorithms for the class Nd2Fe14B. Operational performance might slightly differ from theoretical values. Treat these data as a reference point for designers.

Table 1: Static pull force (pull vs distance) - power drop
MP 5x2.7/1.2x5 C / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 5322 Gs
532.2 mT
0.75 kg / 1.65 pounds
750.0 g / 7.4 N
low risk
1 mm 3295 Gs
329.5 mT
0.29 kg / 0.63 pounds
287.5 g / 2.8 N
low risk
2 mm 1883 Gs
188.3 mT
0.09 kg / 0.21 pounds
93.9 g / 0.9 N
low risk
3 mm 1098 Gs
109.8 mT
0.03 kg / 0.07 pounds
31.9 g / 0.3 N
low risk
5 mm 440 Gs
44.0 mT
0.01 kg / 0.01 pounds
5.1 g / 0.1 N
low risk
10 mm 92 Gs
9.2 mT
0.00 kg / 0.00 pounds
0.2 g / 0.0 N
low risk
15 mm 33 Gs
3.3 mT
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
low risk
20 mm 15 Gs
1.5 mT
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
low risk
30 mm 5 Gs
0.5 mT
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
low risk
50 mm 1 Gs
0.1 mT
0.00 kg / 0.00 pounds
0.0 g / 0.0 N
low risk

Table 2: Sliding hold (wall)
MP 5x2.7/1.2x5 C / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 0.15 kg / 0.33 pounds
150.0 g / 1.5 N
1 mm Stal (~0.2) 0.06 kg / 0.13 pounds
58.0 g / 0.6 N
2 mm Stal (~0.2) 0.02 kg / 0.04 pounds
18.0 g / 0.2 N
3 mm Stal (~0.2) 0.01 kg / 0.01 pounds
6.0 g / 0.1 N
5 mm Stal (~0.2) 0.00 kg / 0.00 pounds
2.0 g / 0.0 N
10 mm Stal (~0.2) 0.00 kg / 0.00 pounds
0.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 pounds
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 pounds
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 pounds
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 pounds
0.0 g / 0.0 N

Table 3: Wall mounting (shearing) - behavior on slippery surfaces
MP 5x2.7/1.2x5 C / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
0.22 kg / 0.50 pounds
225.0 g / 2.2 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
0.15 kg / 0.33 pounds
150.0 g / 1.5 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
0.08 kg / 0.17 pounds
75.0 g / 0.7 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
0.38 kg / 0.83 pounds
375.0 g / 3.7 N

Table 4: Material efficiency (saturation) - power losses
MP 5x2.7/1.2x5 C / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
10%
0.08 kg / 0.17 pounds
75.0 g / 0.7 N
1 mm
25%
0.19 kg / 0.41 pounds
187.5 g / 1.8 N
2 mm
50%
0.38 kg / 0.83 pounds
375.0 g / 3.7 N
3 mm
75%
0.56 kg / 1.24 pounds
562.5 g / 5.5 N
5 mm
100%
0.75 kg / 1.65 pounds
750.0 g / 7.4 N
10 mm
100%
0.75 kg / 1.65 pounds
750.0 g / 7.4 N
11 mm
100%
0.75 kg / 1.65 pounds
750.0 g / 7.4 N
12 mm
100%
0.75 kg / 1.65 pounds
750.0 g / 7.4 N

Table 5: Thermal resistance (stability) - power drop
MP 5x2.7/1.2x5 C / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 0.75 kg / 1.65 pounds
750.0 g / 7.4 N
OK
40 °C -2.2% 0.73 kg / 1.62 pounds
733.5 g / 7.2 N
OK
60 °C -4.4% 0.72 kg / 1.58 pounds
717.0 g / 7.0 N
OK
80 °C -6.6% 0.70 kg / 1.54 pounds
700.5 g / 6.9 N
100 °C -28.8% 0.53 kg / 1.18 pounds
534.0 g / 5.2 N

Table 6: Two magnets (attraction) - field range
MP 5x2.7/1.2x5 C / N38

Gap (mm) Attraction (kg/lbs) (N-S) Lateral Force (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 2.75 kg / 6.06 pounds
5 924 Gs
0.41 kg / 0.91 pounds
412 g / 4.0 N
N/A
1 mm 1.77 kg / 3.90 pounds
8 541 Gs
0.27 kg / 0.58 pounds
265 g / 2.6 N
1.59 kg / 3.51 pounds
~0 Gs
2 mm 1.05 kg / 2.32 pounds
6 590 Gs
0.16 kg / 0.35 pounds
158 g / 1.5 N
0.95 kg / 2.09 pounds
~0 Gs
3 mm 0.60 kg / 1.33 pounds
4 992 Gs
0.09 kg / 0.20 pounds
91 g / 0.9 N
0.54 kg / 1.20 pounds
~0 Gs
5 mm 0.20 kg / 0.44 pounds
2 860 Gs
0.03 kg / 0.07 pounds
30 g / 0.3 N
0.18 kg / 0.39 pounds
~0 Gs
10 mm 0.02 kg / 0.04 pounds
880 Gs
0.00 kg / 0.01 pounds
3 g / 0.0 N
0.02 kg / 0.04 pounds
~0 Gs
20 mm 0.00 kg / 0.00 pounds
184 Gs
0.00 kg / 0.00 pounds
0 g / 0.0 N
0.00 kg / 0.00 pounds
~0 Gs
50 mm 0.00 kg / 0.00 pounds
16 Gs
0.00 kg / 0.00 pounds
0 g / 0.0 N
0.00 kg / 0.00 pounds
~0 Gs
60 mm 0.00 kg / 0.00 pounds
10 Gs
0.00 kg / 0.00 pounds
0 g / 0.0 N
0.00 kg / 0.00 pounds
~0 Gs
70 mm 0.00 kg / 0.00 pounds
6 Gs
0.00 kg / 0.00 pounds
0 g / 0.0 N
0.00 kg / 0.00 pounds
~0 Gs
80 mm 0.00 kg / 0.00 pounds
4 Gs
0.00 kg / 0.00 pounds
0 g / 0.0 N
0.00 kg / 0.00 pounds
~0 Gs
90 mm 0.00 kg / 0.00 pounds
3 Gs
0.00 kg / 0.00 pounds
0 g / 0.0 N
0.00 kg / 0.00 pounds
~0 Gs
100 mm 0.00 kg / 0.00 pounds
2 Gs
0.00 kg / 0.00 pounds
0 g / 0.0 N
0.00 kg / 0.00 pounds
~0 Gs

Table 7: Hazards (implants) - precautionary measures
MP 5x2.7/1.2x5 C / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 3.0 cm
Hearing aid 10 Gs (1.0 mT) 2.5 cm
Timepiece 20 Gs (2.0 mT) 2.0 cm
Phone / Smartphone 40 Gs (4.0 mT) 1.5 cm
Car key 50 Gs (5.0 mT) 1.5 cm
Payment card 400 Gs (40.0 mT) 1.0 cm
HDD hard drive 600 Gs (60.0 mT) 0.5 cm

Table 8: Collisions (kinetic energy) - collision effects
MP 5x2.7/1.2x5 C / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 33.26 km/h
(9.24 m/s)
0.03 J
30 mm 57.59 km/h
(16.00 m/s)
0.09 J
50 mm 74.35 km/h
(20.65 m/s)
0.15 J
100 mm 105.14 km/h
(29.21 m/s)
0.29 J

Table 9: Coating parameters (durability)
MP 5x2.7/1.2x5 C / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Electrical data (Pc)
MP 5x2.7/1.2x5 C / N38

Parameter Value SI Unit / Description
Magnetic Flux 862 Mx 8.6 µWb
Pc Coefficient 0.83 High (Stable)

Table 11: Submerged application
MP 5x2.7/1.2x5 C / N38

Environment Effective steel pull Effect
Air (land) 0.75 kg Standard
Water (riverbed) 0.86 kg
(+0.11 kg buoyancy gain)
+14.5%
Corrosion warning: Standard nickel requires drying after every contact with moisture; lack of maintenance will lead to rust spots.
1. Vertical hold

*Note: On a vertical wall, the magnet holds only ~20% of its max power.

2. Steel thickness impact

*Thin metal sheet (e.g. computer case) severely weakens the holding force.

3. Thermal stability

*For N38 material, the safety limit is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.83

The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Technical and environmental data
Chemical composition
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Sustainability
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 030201-2026
Measurement Calculator
Magnet pull force

Magnetic Induction

Check out also products

It is ideally suited for places where solid attachment of the magnet to the substrate is required without the risk of detachment. Mounting is clean and reversible, unlike gluing. It is also often used in advertising for fixing signs and in workshops for organizing tools.
This is a crucial issue when working with model MP 5x2.7/1.2x5 C / N38. Neodymium magnets are sintered ceramics, which means they are hard but breakable and inelastic. When tightening the screw, you must maintain caution. We recommend tightening manually with a screwdriver, not an impact driver, because excessive force will cause the ring to crack. It's a good idea to use a rubber spacer under the screw head, which will cushion the stresses. Remember: cracking during assembly results from material properties, not a product defect.
These magnets are coated with standard Ni-Cu-Ni plating, which protects them in indoor conditions, but does not ensure full waterproofing. Damage to the protective layer during assembly is the most common cause of rusting. If you must use it outside, paint it with anti-corrosion paint after mounting.
The inner hole diameter determines the maximum size of the mounting element. For magnets with a straight hole, a conical head can act like a wedge and burst the magnet. Aesthetic mounting requires selecting the appropriate head size.
This model is characterized by dimensions Ø5x5 mm and a weight of 0.69 g. The key parameter here is the holding force amounting to approximately 0.75 kg (force ~7.31 N). The mounting hole diameter is precisely 2.7/1.2 mm.
The poles are located on the planes with holes, not on the sides of the ring. In the case of connecting two rings, make sure one is turned the right way. When ordering a larger quantity, magnets are usually packed in stacks, where they are already naturally paired.

Strengths and weaknesses of rare earth magnets.

Benefits

Apart from their strong power, neodymium magnets have these key benefits:
  • They retain full power for almost 10 years – the drop is just ~1% (based on simulations),
  • They are resistant to demagnetization induced by presence of other magnetic fields,
  • Thanks to the shiny finish, the layer of Ni-Cu-Ni, gold-plated, or silver gives an visually attractive appearance,
  • They show high magnetic induction at the operating surface, which improves attraction properties,
  • Neodymium magnets are characterized by very high magnetic induction on the magnet surface and are able to act (depending on the form) even at a temperature of 230°C or more...
  • Possibility of individual modeling as well as adapting to complex applications,
  • Huge importance in electronics industry – they find application in magnetic memories, electric drive systems, diagnostic systems, and multitasking production systems.
  • Relatively small size with high pulling force – neodymium magnets offer strong magnetic field in tiny dimensions, which makes them useful in compact constructions

Cons

Disadvantages of neodymium magnets:
  • Susceptibility to cracking is one of their disadvantages. Upon strong impact they can fracture. We advise keeping them in a strong case, which not only secures them against impacts but also raises their durability
  • Neodymium magnets lose their force under the influence of heating. As soon as 80°C is exceeded, many of them start losing their power. Therefore, we recommend our special magnets marked [AH], which maintain durability even at temperatures up to 230°C
  • Magnets exposed to a humid environment can corrode. Therefore when using outdoors, we suggest using waterproof magnets made of rubber, plastic or other material resistant to moisture
  • We recommend a housing - magnetic mechanism, due to difficulties in creating threads inside the magnet and complex shapes.
  • Potential hazard to health – tiny shards of magnets are risky, when accidentally swallowed, which gains importance in the aspect of protecting the youngest. Furthermore, tiny parts of these magnets are able to be problematic in diagnostics medical in case of swallowing.
  • Due to neodymium price, their price is relatively high,

Lifting parameters

Best holding force of the magnet in ideal parameterswhat contributes to it?

Holding force of 0.75 kg is a measurement result performed under the following configuration:
  • with the contact of a sheet made of special test steel, guaranteeing maximum field concentration
  • whose transverse dimension reaches at least 10 mm
  • characterized by smoothness
  • under conditions of no distance (metal-to-metal)
  • during pulling in a direction perpendicular to the plane
  • at room temperature

Key elements affecting lifting force

In real-world applications, the actual lifting capacity depends on several key aspects, presented from the most important:
  • Gap between magnet and steel – every millimeter of distance (caused e.g. by veneer or unevenness) significantly weakens the magnet efficiency, often by half at just 0.5 mm.
  • Angle of force application – highest force is obtained only during perpendicular pulling. The force required to slide of the magnet along the surface is standardly several times lower (approx. 1/5 of the lifting capacity).
  • Steel thickness – insufficiently thick sheet does not accept the full field, causing part of the power to be lost into the air.
  • Material composition – different alloys attracts identically. High carbon content weaken the interaction with the magnet.
  • Surface structure – the smoother and more polished the plate, the better the adhesion and stronger the hold. Unevenness creates an air distance.
  • Operating temperature – NdFeB sinters have a sensitivity to temperature. At higher temperatures they lose power, and at low temperatures they can be stronger (up to a certain limit).

Holding force was checked on the plate surface of 20 mm thickness, when the force acted perpendicularly, however under shearing force the load capacity is reduced by as much as 5 times. Moreover, even a minimal clearance between the magnet and the plate decreases the lifting capacity.

Safe handling of neodymium magnets
No play value

Product intended for adults. Small elements can be swallowed, causing severe trauma. Store away from kids and pets.

Machining danger

Dust created during grinding of magnets is flammable. Do not drill into magnets without proper cooling and knowledge.

Warning for heart patients

Individuals with a pacemaker must keep an large gap from magnets. The magnetic field can disrupt the operation of the life-saving device.

Nickel allergy

Warning for allergy sufferers: The Ni-Cu-Ni coating contains nickel. If skin irritation appears, cease working with magnets and use protective gear.

Threat to electronics

Equipment safety: Strong magnets can ruin data carriers and sensitive devices (heart implants, medical aids, timepieces).

Phone sensors

Note: neodymium magnets generate a field that confuses sensitive sensors. Maintain a separation from your mobile, tablet, and GPS.

Finger safety

Big blocks can smash fingers in a fraction of a second. Do not place your hand between two attracting surfaces.

Risk of cracking

NdFeB magnets are ceramic materials, which means they are prone to chipping. Collision of two magnets will cause them breaking into shards.

Demagnetization risk

Avoid heat. NdFeB magnets are sensitive to heat. If you require operation above 80°C, inquire about HT versions (H, SH, UH).

Powerful field

Handle with care. Neodymium magnets act from a long distance and snap with huge force, often faster than you can react.

Caution! Need more info? Check our post: Why are neodymium magnets dangerous?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98