tel: +48 22 499 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our offer. All magnesy in our store are in stock for immediate purchase (see the list). See the magnet pricing for more details check the magnet price list

Magnet for water searching F200 GOLD

Where to purchase very strong neodymium magnet? Magnetic holders in airtight, solid enclosure are excellent for use in challenging climate conditions, including during rain and snow more information...

magnetic holders

Magnetic holders can be used to improve manufacturing, underwater exploration, or searching for space rocks from gold more...

We promise to ship ordered magnets if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x250 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130371

GTIN: 5906301813194

5

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

250 mm

Weight

0.01 g

762.60 with VAT / pcs + price for transport

620.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
620.00 ZŁ
762.60 ZŁ
price from 5 pcs
589.00 ZŁ
724.47 ZŁ
price from 8 pcs
558.00 ZŁ
686.34 ZŁ

Want to negotiate?

Call us now +48 22 499 98 98 alternatively get in touch by means of form the contact section.
Weight as well as shape of magnetic components can be estimated with our magnetic mass calculator.

Orders placed before 14:00 will be shipped the same business day.

SM 25x250 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 25x250 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130371
GTIN
5906301813194
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
250 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the force of neodymium magnets, which are placed in a construction made of stainless steel usually AISI304. As a result, it is possible to precisely remove ferromagnetic particles from different substances. A fundamental component of its operation is the repulsion of magnetic poles N and S, which enables magnetic substances to be targeted. The thickness of the embedded magnet and its structure's pitch determine the power and range of the separator's operation.
Generally speaking, magnetic separators serve to extract ferromagnetic particles. If the cans are made of ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers are used in the food industry to remove metallic contaminants, for example iron fragments or iron dust. Our rods are made from acid-resistant steel, AISI 304, approved for contact with food.
Magnetic rollers, often called magnetic separators, are used in metal separation, food production as well as recycling. They help in extracting iron dust during the process of separating metals from other wastes.
Our magnetic rollers are built with a neodymium magnet placed in a stainless steel tube casing of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar will be with M8 threaded holes - 18 mm, allowing for quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars differ in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in materials, N42 and N52.
Generally it is believed that the greater the magnet's power, the more effective. However, the strength of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and expected needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is more flat, the magnetic force lines are more compressed. Otherwise, when the magnet is thick, the force lines will be longer and reach further.
For making the casings of magnetic separators - rollers, usually stainless steel is used, especially types AISI 316, AISI 316L, and AISI 304.
In a saltwater contact, AISI 316 steel is highly recommended due to its outstanding corrosion resistance.
Magnetic rollers are characterized by their unique configuration of poles and their ability to attract magnetic substances directly onto their surface, in contrast to other separators that may utilize complex filtration systems.
Technical designations and terms pertaining to magnetic separators comprise amongst others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The result is checked in a value table - the lowest is N30. All designations below N27 or N25 suggest recycling that falls below the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including excellent separation efficiency, strong magnetic field, and durability. On the other hand, among the drawbacks, one can mention the need for regular cleaning, higher cost, and potential installation challenges.
For proper maintenance of neodymium magnetic rollers, it’s worth regularly cleaning them from deposits, avoiding extreme temperatures above 80 degrees, and shielding them from moisture if the threads are not sealed – in ours, they are. The rollers feature waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and weaken. Testing of the rollers is recommended be carried out every two years. Caution should be taken during use, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, used for separating ferromagnetic contaminants from raw materials. They are used in the food industry, recycling, and plastic processing, where metal separation is crucial.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their remarkable pulling force, neodymium magnets offer the following advantages:

  • They virtually do not lose power, because even after 10 years, the decline in efficiency is only ~1% (according to literature),
  • They remain magnetized despite exposure to strong external fields,
  • By applying a shiny layer of gold, the element gains a sleek look,
  • Magnetic induction on the surface of these magnets is very strong,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for fine forming and precise design, these magnets can be produced in multiple shapes and sizes, greatly improving application potential,
  • Wide application in new technology industries – they find application in computer drives, electric drives, healthcare devices along with other advanced devices,
  • Thanks to their power density, small magnets offer high magnetic performance, with minimal size,

Disadvantages of NdFeB magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to mechanical hits, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture while also enhances its overall durability,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a humid environment. If exposed to rain, we recommend using moisture-resistant magnets, such as those made of polymer,
  • Limited ability to create precision features in the magnet – the use of a housing is recommended,
  • Safety concern from tiny pieces may arise, if ingested accidentally, which is notable in the protection of children. It should also be noted that miniature parts from these assemblies can complicate medical imaging if inside the body,
  • In cases of large-volume purchasing, neodymium magnet cost may not be economically viable,

Precautions

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets are the most powerful magnets ever created, and their power can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

If you have a finger between or alternatively on the path of attracting magnets, there may be a large cut or even a fracture.

Neodymium magnetic are highly susceptible to damage, resulting in shattering.

Neodymium magnetic are highly fragile, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets can become demagnetized at high temperatures.

Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

  Magnets are not toys, youngest should not play with them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Caution!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98