tel: +48 888 99 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our proposal. Practically all "magnets" on our website are available for immediate delivery (see the list). See the magnet price list for more details see the magnet price list

Magnets for searching F400 GOLD

Where to purchase very strong neodymium magnet? Magnet holders in solid and airtight steel casing are ideally suited for use in difficult, demanding climate conditions, including in the rain and snow more...

magnetic holders

Magnetic holders can be used to improve production, exploring underwater areas, or searching for meteorites from gold more information...

Shipping always shipped if the order is placed before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x250 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130371

GTIN: 5906301813194

5

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

250 mm

Weight

0.01 g

762.60 with VAT / pcs + price for transport

620.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
620.00 ZŁ
762.60 ZŁ
price from 5 pcs
589.00 ZŁ
724.47 ZŁ
price from 10 pcs
558.00 ZŁ
686.34 ZŁ

Can't decide what to choose?

Contact us by phone +48 888 99 98 98 if you prefer get in touch using inquiry form through our site.
Specifications as well as structure of magnets can be reviewed with our power calculator.

Same-day processing for orders placed before 14:00.

SM 25x250 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 25x250 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130371
GTIN
5906301813194
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
250 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the power of neodymium magnets, which are embedded in a construction made of stainless steel usually AISI304. As a result, it is possible to efficiently remove ferromagnetic particles from different substances. An important element of its operation is the repulsion of N and S poles of neodymium magnets, which causes magnetic substances to be targeted. The thickness of the magnet and its structure pitch affect the range and strength of the separator's operation.
Generally speaking, magnetic separators serve to extract ferromagnetic particles. If the cans are made of ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers are employed in food production for the elimination of metallic contaminants, for example iron fragments or iron dust. Our rods are constructed from acid-resistant steel, EN 1.4301, suitable for contact with food.
Magnetic rollers, otherwise magnetic separators, are used in food production, metal separation as well as recycling. They help in removing iron dust in the course of the process of separating metals from other wastes.
Our magnetic rollers are built with neodymium magnets embedded in a stainless steel tube casing of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded holes - 18 mm, enabling quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars stand out in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in two materials, N42 and N52.
Generally it is believed that the stronger the magnet, the more efficient it is. But, the effectiveness of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
In the case where the magnet is more flat, the magnetic force lines will be short. By contrast, in the case of a thicker magnet, the force lines will be longer and reach further.
For constructing the casings of magnetic separators - rollers, most often stainless steel is employed, especially types AISI 304, AISI 316, and AISI 316L.
In a saltwater contact, AISI 316 steel is recommended due to its exceptional corrosion resistance.
Magnetic bars are characterized by their specific arrangement of poles and their ability to attract magnetic particles directly onto their surface, in contrast to other devices that may utilize complex filtration systems.
Technical designations and terms related to magnetic separators include amongst others magnet pitch, polarity, and magnetic induction, as well as the steel type applied.
Magnetic induction for a magnet on a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value near the magnetic pole. The result is verified in a value table - the lowest is N30. All designations below N27 or N25 suggest recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic rollers offer many advantages, including excellent separation efficiency, strong magnetic field, and durability. However, some of the downsides may involve the requirement for frequent cleaning, greater weight, and potential installation difficulties.
To properly maintain of neodymium magnetic rollers, it’s worth washing after each use, avoiding temperatures up to 80°C. The rollers our rollers have waterproofing IP67, so if they are leaky, the magnets inside can rust and lose their power. Testing of the rollers is recommended be carried out once every 24 months. Care should be taken, as there is a risk getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, used for separating ferromagnetic contaminants from raw materials. They are used in the food industry, recycling, and plastic processing, where metal separation is crucial.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their magnetic efficiency, neodymium magnets provide the following advantages:

  • They do not lose their even during nearly 10 years – the reduction of lifting capacity is only ~1% (theoretically),
  • Their ability to resist magnetic interference from external fields is notable,
  • Because of the reflective layer of silver, the component looks visually appealing,
  • The outer field strength of the magnet shows advanced magnetic properties,
  • With the right combination of materials, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the design),
  • Thanks to the possibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which broadens their application range,
  • Important function in cutting-edge sectors – they find application in HDDs, electromechanical systems, medical equipment and technologically developed systems,
  • Thanks to their power density, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to physical collisions, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks while also increases its overall robustness,
  • They lose strength at increased temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a humid environment. If exposed to rain, we recommend using waterproof magnets, such as those made of plastic,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing holes directly in the magnet,
  • Potential hazard linked to microscopic shards may arise, if ingested accidentally, which is important in the health of young users. Moreover, small elements from these assemblies can complicate medical imaging after being swallowed,
  • Due to the price of neodymium, their cost is above average,

Maximum holding power of the magnet – what it depends on?

The given pulling force of the magnet means the maximum force, determined in a perfect environment, namely:

  • with mild steel, serving as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • with no separation
  • with vertical force applied
  • under standard ambient temperature

Determinants of lifting force in real conditions

The lifting capacity of a magnet depends on in practice key elements, ordered from most important to least significant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on plates with a smooth surface of suitable thickness, under a perpendicular pulling force, whereas under attempts to slide the magnet the holding force is lower. Moreover, even a small distance {between} the magnet and the plate reduces the load capacity.

Handle with Care: Neodymium Magnets

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets are extremely fragile, resulting in shattering.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

Neodymium magnets can demagnetize at high temperatures.

While Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are the most powerful magnets ever created, and their strength can surprise you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.

  Do not give neodymium magnets to children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets will bounce and contact together within a radius of several to around 10 cm from each other.

Keep neodymium magnets away from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Be careful!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98