UMP 94x40 [3xM10] GW F550 Silver Black Lina / N52 - search holder
search holder
Catalog no 210491
GTIN: 5906301814153
Diameter Ø [±0,1 mm]
94 mm
Height [±0,1 mm]
40 mm
Weight
2262 g
Magnetization Direction
↑ axial
Load capacity
650 kg / 6374.32 N
Coating
[NiCuNi] nickel
400.00 ZŁ with VAT / pcs + price for transport
325.20 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Can't decide what to choose?
Pick up the phone and ask
+48 888 99 98 98
or send us a note via
our online form
through our site.
Strength and form of magnets can be checked with our
force calculator.
Order by 14:00 and we’ll ship today!
UMP 94x40 [3xM10] GW F550 Silver Black Lina / N52 - search holder
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips

Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their magnetic capacity, neodymium magnets provide the following advantages:
- They retain their attractive force for around ten years – the drop is just ~1% (according to analyses),
- They remain magnetized despite exposure to strong external fields,
- Because of the reflective layer of nickel, the component looks aesthetically refined,
- They possess intense magnetic force measurable at the magnet’s surface,
- These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to profile),
- The ability for accurate shaping as well as customization to individual needs – neodymium magnets can be manufactured in multiple variants of geometries, which enhances their versatility in applications,
- Important function in new technology industries – they are used in HDDs, rotating machines, medical equipment as well as technologically developed systems,
- Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in tiny dimensions, which makes them useful in miniature devices
Disadvantages of rare earth magnets:
- They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to shocks, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage while also enhances its overall robustness,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a damp environment. If exposed to rain, we recommend using waterproof magnets, such as those made of polymer,
- The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is not feasible,
- Possible threat due to small fragments may arise, in case of ingestion, which is notable in the family environments. It should also be noted that small elements from these magnets might complicate medical imaging when ingested,
- In cases of mass production, neodymium magnet cost may be a barrier,
Maximum holding power of the magnet – what affects it?
The given holding capacity of the magnet corresponds to the highest holding force, measured in the best circumstances, specifically:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a polished side
- with zero air gap
- with vertical force applied
- in normal thermal conditions
Lifting capacity in practice – influencing factors
In practice, the holding capacity of a magnet is affected by the following aspects, arranged from the most important to the least relevant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was measured by applying a steel plate with a smooth surface of suitable thickness (min. 20 mm), under vertically applied force, however under parallel forces the holding force is lower. Additionally, even a slight gap {between} the magnet’s surface and the plate reduces the load capacity.
Exercise Caution with Neodymium Magnets
Neodymium magnets are the strongest magnets ever invented. Their strength can shock you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
If have a finger between or alternatively on the path of attracting magnets, there may be a large cut or a fracture.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Neodymium magnetic are extremely fragile, they easily crack as well as can become damaged.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Avoid bringing neodymium magnets close to a phone or GPS.
Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
It is important to keep neodymium magnets away from youngest children.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Safety precautions!
To show why neodymium magnets are so dangerous, see the article - How very dangerous are powerful neodymium magnets?.