tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our proposal. Practically all magnesy neodymowe on our website are available for immediate delivery (check the list). See the magnet price list for more details check the magnet price list

Magnets for water searching F200 GOLD

Where to purchase very strong magnet? Magnet holders in airtight, solid enclosure are ideally suited for use in difficult climate conditions, including during snow and rain more...

magnetic holders

Holders with magnets can be used to improve production, exploring underwater areas, or locating space rocks made of metal see...

We promise to ship your order if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMP 94x40 [3xM10] GW F550 Silver Black Lina / N52 - search holder

search holder

Catalog no 210491

GTIN: 5906301814153

5

Diameter Ø [±0,1 mm]

94 mm

Height [±0,1 mm]

40 mm

Weight

2262 g

Magnetization Direction

↑ axial

Load capacity

650 kg / 6374.32 N

Coating

[NiCuNi] nickel

400.00 with VAT / pcs + price for transport

325.20 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
325.20 ZŁ
400.00 ZŁ
price from 4 pcs
305.69 ZŁ
376.00 ZŁ
price from 7 pcs
286.18 ZŁ
352.00 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

UMP 94x40 [3xM10] GW F550 Silver Black Lina / N52 - search holder

Specification/characteristics UMP 94x40 [3xM10] GW F550 Silver Black Lina / N52 - search holder
properties
values
Cat. no.
210491
GTIN
5906301814153
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
94 mm [±0,1 mm]
Height
40 mm [±0,1 mm]
Weight
2262 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
650 kg / 6374.32 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

For underwater searches, we recommend UMP 94x40 [3xM10] GW F550 Silver Black Lina / N52, which is very powerful and has an impressive magnetic pulling force of approximately ~650 kg. This model is perfect for locating metal objects at the bottom of water bodies.
Neodymium magnets are efficient for searching in water due to their strong attraction capability. UMP 94x40 [3xM10] GW F550 Silver Black Lina / N52 weighing 2262 grams with a pulling force of ~650 kg is a great choice for finding metallic findings.
When choosing a magnetic holder for underwater searches, you should pay attention to the number of Gauss or Tesla value, which determines the lifting force. UMP 94x40 [3xM10] GW F550 Silver Black Lina / N52 has a pulling force of approximately ~650 kg, making it a powerful tool for recovering heavier items. Remember that the full power is achieved with the top attachment, while the side attachment offers only 10%-25% of that power.
The sideways force of a magnet is typically lower than the adhesive force because it depends on the fraction of the magnetic field that interacts with the metal surface. In the case of UMP 94x40 [3xM10] GW F550 Silver Black Lina / N52 with a pulling force of ~650 kg, maximum power are achieved with the top attachment, while the side holder offers only 10%-25% of the declared force.
he attraction force was measured under laboratory conditions, using a smooth S235 low-carbon steel plate with a thickness of 10 mm, with the application of lifting force in a vertical manner. In a situation where the force acts parallelly, the magnet's attraction force can be 5 times lower! Any gap between the magnet and the plate can result in a reduction in the attraction force.
magnetic pot strength F200 GOLD F300 GOLD

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense power, neodymium magnets have the following advantages:

  • They do not lose their power (of the magnet). After approximately 10 years, their strength decreases by only ~1% (theoretically),
  • They are exceptionally resistant to demagnetization caused by an external magnetic field,
  • Thanks to the shiny finish and nickel, gold, or silver coating, they have an aesthetic appearance,
  • They have exceptionally high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve significant thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • The ability for precise shaping and customization to specific needs – neodymium magnets can be produced in a wide range of shapes and sizes, which expands the range of their possible uses.
  • Significant importance in the industry of new technologies – are used in computer drives, electric drive mechanisms, medical devices and other modern machines.

Disadvantages of neodymium magnets:

  • They are prone to breaking as they are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, it is suggested using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts and also increases its overall strength,
  • Magnets lose their power due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent loss in strength (although it is worth noting that this is dependent on the form and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
  • Health risk arising from small pieces of magnets can be dangerous, in case of ingestion, which is particularly important in the context of children's health. It's also worth noting that small elements of these products are able to hinder the diagnostic process in case of swallowing.

Exercise Caution with Neodymium Magnets

 It is essential to maintain neodymium magnets away from children.

Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnetic are known for being fragile, which can cause them to become damaged.

Magnets made of neodymium are extremely delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets can become demagnetized at high temperatures.

Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can shock you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Keep neodymium magnets away from GPS and smartphones.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

Magnets will crack or alternatively crumble with careless joining to each other. You can't approach them to each other. At a distance less than 10 cm you should hold them very strongly.

Exercise caution!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98