e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnets Nd2Fe14B - our offer. Practically all "neodymium magnets" in our store are available for immediate delivery (see the list). See the magnet pricing for more details see the magnet price list

Magnets for water searching F400 GOLD

Where to buy strong neodymium magnet? Holders with magnets in airtight, solid steel enclosure are perfect for use in challenging weather conditions, including snow and rain more information...

magnetic holders

Holders with magnets can be applied to facilitate production processes, underwater discoveries, or searching for meteors from gold more information...

We promise to ship ordered magnets on the same day by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x475 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130377

GTIN: 5906301813255

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

475 mm

Weight

2545 g

1 414.50 with VAT / pcs + price for transport

1 150.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1 150.00 ZŁ
1 414.50 ZŁ
price from 3 pcs
1 092.50 ZŁ
1 343.78 ZŁ
price from 4 pcs
1 035.00 ZŁ
1 273.05 ZŁ

Do you have purchase concerns?

Pick up the phone and ask +48 22 499 98 98 if you prefer get in touch via request form through our site.
Force and structure of magnets can be checked on our power calculator.

Order by 14:00 and we’ll ship today!

SM 32x475 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 32x475 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130377
GTIN
5906301813255
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
475 mm [±0,1 mm]
Weight
2545 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the force of neodymium magnets, which are embedded in a construction made of stainless steel mostly AISI304. In this way, it is possible to effectively separate ferromagnetic elements from different substances. A key aspect of its operation is the repulsion of N and S poles of neodymium magnets, which allows magnetic substances to be collected. The thickness of the magnet and its structure pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators serve to separate ferromagnetic elements. If the cans are ferromagnetic, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers are used in the food sector to clear metallic contaminants, such as iron fragments or iron dust. Our rods are made from durable acid-resistant steel, AISI 304, approved for contact with food.
Magnetic rollers, often called cylindrical magnets, are used in metal separation, food production as well as recycling. They help in eliminating iron dust during the process of separating metals from other materials.
Our magnetic rollers are built with neodymium magnets embedded in a stainless steel tube cylinder made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar will be with M8 threaded holes - 18 mm, which enables easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars differ in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in materials, N42 as well as N52.
Generally it is believed that the stronger the magnet, the more efficient it is. However, the value of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and specific needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is more flat, the magnetic force lines will be short. On the other hand, in the case of a thicker magnet, the force lines will be extended and extend over a greater distance.
For constructing the casings of magnetic separators - rollers, frequently stainless steel is utilized, particularly types AISI 316, AISI 316L, and AISI 304.
In a salt water contact, type AISI 316 steel is recommended thanks to its outstanding corrosion resistance.
Magnetic rollers are characterized by their unique configuration of poles and their capability to attract magnetic substances directly onto their surface, as opposed to other devices that may utilize more complicated filtration systems.
Technical designations and terms related to magnetic separators comprise among others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. Disadvantages may include higher cost compared to other types of magnets and the need for regular maintenance.
For proper maintenance of neodymium magnetic rollers, you should cleaning regularly, avoiding temperatures up to 80°C. The rollers feature waterproofing IP67, so if they are not sealed, the magnets inside can rust and lose their power. Testing of the rollers should be carried out once every 24 months. Caution should be taken during use, as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, which are used to remove metal contaminants from bulk and granular materials. They are used in the food industry, recycling, and plastic processing, where metal separation is crucial.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their remarkable magnetic power, neodymium magnets offer the following advantages:

  • Their power is durable, and after approximately ten years, it drops only by ~1% (theoretically),
  • They are highly resistant to demagnetization caused by external magnetic sources,
  • Because of the reflective layer of nickel, the component looks high-end,
  • They possess intense magnetic force measurable at the magnet’s surface,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • Thanks to the possibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in various configurations, which increases their application range,
  • Key role in advanced technical fields – they find application in data storage devices, electric motors, diagnostic apparatus and high-tech tools,
  • Thanks to their power density, small magnets offer high magnetic performance, with minimal size,

Disadvantages of neodymium magnets:

  • They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time strengthens its overall durability,
  • They lose field intensity at extreme temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of plastic for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is not feasible,
  • Health risk linked to microscopic shards may arise, especially if swallowed, which is notable in the protection of children. It should also be noted that small elements from these devices might hinder health screening if inside the body,
  • High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications

Exercise Caution with Neodymium Magnets

 Keep neodymium magnets away from youngest children.

Neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Neodymium magnets can demagnetize at high temperatures.

Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Magnets made of neodymium are extremely fragile, resulting in shattering.

Neodymium magnetic are fragile and will break if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are the strongest magnets ever invented. Their power can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Keep neodymium magnets away from the wallet, computer, and TV.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

People with pacemakers are advised to avoid neodymium magnets.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

If joining of neodymium magnets is not controlled, at that time they may crumble and crack. Remember not to approach them to each other or hold them firmly in hands at a distance less than 10 cm.

Pay attention!

So you are aware of why neodymium magnets are so dangerous, see the article titled How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98