SM 32x375 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130379
GTIN: 5906301813279
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
375 mm
Weight
2010 g
1119.30 ZŁ with VAT / pcs + price for transport
910.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to negotiate?
Give us a call
+48 888 99 98 98
or contact us by means of
inquiry form
our website.
Specifications along with form of magnets can be checked on our
our magnetic calculator.
Same-day processing for orders placed before 14:00.
SM 32x375 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their strong magnetic energy, neodymium magnets have these key benefits:
- They have constant strength, and over more than ten years their attraction force decreases symbolically – ~1% (in testing),
- They show exceptional resistance to demagnetization from external field exposure,
- The use of a polished gold surface provides a refined finish,
- They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
- Thanks to their exceptional temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
- The ability for precise shaping or adjustment to individual needs – neodymium magnets can be manufactured in many forms and dimensions, which amplifies their functionality across industries,
- Important function in advanced technical fields – they serve a purpose in data storage devices, electric drives, healthcare devices as well as technologically developed systems,
- Relatively small size with high magnetic force – neodymium magnets offer strong power in compact dimensions, which makes them ideal in small systems
Disadvantages of neodymium magnets:
- They can break when subjected to a sudden impact. If the magnets are exposed to external force, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time enhances its overall resistance,
- High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a moist environment – during outdoor use, we recommend using encapsulated magnets, such as those made of non-metallic materials,
- Limited ability to create complex details in the magnet – the use of a housing is recommended,
- Safety concern due to small fragments may arise, especially if swallowed, which is significant in the health of young users. It should also be noted that minuscule fragments from these devices can complicate medical imaging if inside the body,
- High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which may limit large-scale applications
Highest magnetic holding force – what affects it?
The given strength of the magnet means the optimal strength, determined in the best circumstances, specifically:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- having a thickness of no less than 10 millimeters
- with a polished side
- in conditions of no clearance
- with vertical force applied
- under standard ambient temperature
What influences lifting capacity in practice
The lifting capacity of a magnet is influenced by in practice the following factors, according to their importance:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was measured on the plate surface of 20 mm thickness, when the force acted perpendicularly, however under attempts to slide the magnet the holding force is lower. Additionally, even a minimal clearance {between} the magnet and the plate decreases the holding force.
Handle Neodymium Magnets with Caution
Magnets are not toys, youngest should not play with them.
Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
The magnet is coated with nickel - be careful if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Keep neodymium magnets away from GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Neodymium magnets can become demagnetized at high temperatures.
Despite the general resilience of magnets, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Neodymium magnets are the most powerful, most remarkable magnets on earth, and the surprising force between them can shock you at first.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
Magnets will crack or crumble with uncontrolled joining to each other. You can't move them to each other. At a distance less than 10 cm you should have them very strongly.
Magnets made of neodymium are delicate as well as can easily crack as well as shatter.
Neodymium magnetic are delicate as well as will crack if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
Safety rules!
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.