SM 32x375 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130379
GTIN: 5906301813279
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
375 mm
Weight
2010 g
1119.30 ZŁ with VAT / pcs + price for transport
910.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure about your choice?
Call us now
+48 888 99 98 98
if you prefer get in touch via
our online form
the contact page.
Specifications along with shape of a magnet can be tested on our
force calculator.
Same-day shipping for orders placed before 14:00.
SM 32x375 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their strong power, neodymium magnets have these key benefits:
- They retain their attractive force for nearly ten years – the loss is just ~1% (according to analyses),
- Their ability to resist magnetic interference from external fields is notable,
- Because of the reflective layer of silver, the component looks visually appealing,
- They exhibit elevated levels of magnetic induction near the outer area of the magnet,
- Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
- Thanks to the possibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in various configurations, which broadens their application range,
- Significant impact in advanced technical fields – they are utilized in HDDs, rotating machines, diagnostic apparatus as well as other advanced devices,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of NdFeB magnets:
- They are fragile when subjected to a sudden impact. If the magnets are exposed to shocks, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage while also increases its overall resistance,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to humidity can degrade. Therefore, for outdoor applications, we recommend waterproof types made of plastic,
- Limited ability to create threads in the magnet – the use of a mechanical support is recommended,
- Health risk due to small fragments may arise, in case of ingestion, which is significant in the context of child safety. Additionally, miniature parts from these magnets have the potential to complicate medical imaging once in the system,
- In cases of large-volume purchasing, neodymium magnet cost may be a barrier,
Maximum lifting force for a neodymium magnet – what it depends on?
The given holding capacity of the magnet represents the highest holding force, determined in the best circumstances, namely:
- with mild steel, serving as a magnetic flux conductor
- with a thickness of minimum 10 mm
- with a smooth surface
- with zero air gap
- under perpendicular detachment force
- under standard ambient temperature
Determinants of lifting force in real conditions
In practice, the holding capacity of a magnet is conditioned by the following aspects, in descending order of importance:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was checked on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, in contrast under shearing force the load capacity is reduced by as much as 75%. Moreover, even a small distance {between} the magnet’s surface and the plate decreases the lifting capacity.
Handle Neodymium Magnets with Caution
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their power can surprise you.
Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.
Do not bring neodymium magnets close to GPS and smartphones.
Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Neodymium magnets generate strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
Neodymium magnets jump and clash mutually within a distance of several to almost 10 cm from each other.
Neodymium magnets are particularly fragile, which leads to damage.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Keep neodymium magnets away from people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Magnets are not toys, youngest should not play with them.
Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Neodymium magnets can become demagnetized at high temperatures.
Under specific conditions, Neodymium magnets may experience demagnetization when subjected to high temperatures.
Be careful!
To show why neodymium magnets are so dangerous, see the article - How dangerous are powerful neodymium magnets?.
