tel: +48 888 99 98 98

neodymium magnets

We provide blue color magnets Nd2Fe14B - our store's offer. Practically all "magnets" in our store are in stock for immediate purchase (see the list). See the magnet pricing for more details check the magnet price list

Magnet for fishing F200 GOLD

Where to buy very strong neodymium magnet? Holders with magnets in airtight and durable steel enclosure are excellent for use in difficult, demanding weather, including snow and rain more information...

magnetic holders

Magnetic holders can be applied to improve production, exploring underwater areas, or locating meteors from gold see...

Enjoy shipping of your order if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x375 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130379

GTIN: 5906301813279

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

375 mm

Weight

2010 g

1 119.30 with VAT / pcs + price for transport

910.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
910.00 ZŁ
1 119.30 ZŁ
price from 3 pcs
864.50 ZŁ
1 063.34 ZŁ
price from 5 pcs
819.00 ZŁ
1 007.37 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

SM 32x375 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 32x375 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130379
GTIN
5906301813279
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
375 mm [±0,1 mm]
Weight
2010 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the power of neodymium magnets, which are placed in a casing made of stainless steel mostly AISI304. As a result, it is possible to precisely separate ferromagnetic elements from different substances. An important element of its operation is the use of repulsion of N and S poles of neodymium magnets, which enables magnetic substances to be collected. The thickness of the embedded magnet and its structure pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators are designed to extract ferromagnetic elements. If the cans are made of ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers are employed in food production to remove metallic contaminants, for example iron fragments or iron dust. Our rollers are built from acid-resistant steel, EN 1.4301, intended for contact with food.
Magnetic rollers, often called magnetic separators, are used in metal separation, food production as well as recycling. They help in eliminating iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers are built with a neodymium magnet anchored in a stainless steel tube casing of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar can be with M8 threaded holes - 18 mm, which enables easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars differ in terms of magnetic force lines, flux density and the area of operation of the magnetic field. We produce them in materials, N42 as well as N52.
Usually it is believed that the stronger the magnet, the more effective. But, the value of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is thin, the magnetic force lines will be short. On the other hand, in the case of a thicker magnet, the force lines will be extended and extend over a greater distance.
For making the casings of magnetic separators - rollers, frequently stainless steel is used, particularly types AISI 316, AISI 316L, and AISI 304.
In a saltwater environment, type AISI 316 steel is recommended thanks to its exceptional anti-corrosion properties.
Magnetic bars are characterized by their unique configuration of poles and their capability to attract magnetic substances directly onto their surface, as opposed to other devices that may utilize more complicated filtration systems.
Technical designations and terms related to magnetic separators comprise amongst others polarity, magnetic induction, magnet pitch, as well as the steel type applied.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value near the magnetic pole. The result is checked in a value table - the lowest is N30. All designations less than N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. However, some of the downsides may involve higher cost compared to other types of magnets and the need for regular maintenance.
To properly maintain of neodymium magnetic rollers, it’s worth they should be regularly cleaned, avoiding temperatures above 80 degrees. The rollers feature waterproofing IP67, so if they are not sealed, the magnets inside can rust and weaken. Testing of the rollers should be carried out once every 24 months. Care should be taken, as it’s possible of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where metal separation is crucial.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their exceptional pulling force, neodymium magnets offer the following advantages:

  • They have constant strength, and over more than ten years their attraction force decreases symbolically – ~1% (according to theory),
  • Their ability to resist magnetic interference from external fields is impressive,
  • By applying a shiny layer of nickel, the element gains a modern look,
  • They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
  • These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to build),
  • The ability for custom shaping and adaptation to custom needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which enhances their versatility in applications,
  • Wide application in cutting-edge sectors – they are used in computer drives, rotating machines, diagnostic apparatus or even technologically developed systems,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, with minimal size,

Disadvantages of rare earth magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to shocks, we recommend in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks and additionally increases its overall robustness,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of rubber for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing threads directly in the magnet,
  • Potential hazard related to magnet particles may arise, if ingested accidentally, which is significant in the protection of children. Additionally, miniature parts from these magnets might interfere with diagnostics after being swallowed,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Precautions

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can shock you.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are especially delicate, which leads to shattering.

Neodymium magnetic are fragile as well as will break if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Magnets attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a significant injury may occur. Magnets, depending on their size, are able even cut off a finger or there can be a serious pressure or even a fracture.

 It is essential to keep neodymium magnets away from children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Exercise caution!

To show why neodymium magnets are so dangerous, see the article - How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98