SM 32x375 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130379
GTIN: 5906301813279
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
375 mm
Weight
2010 g
1119.30 ZŁ with VAT / pcs + price for transport
910.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Give us a call
+48 888 99 98 98
or get in touch using
contact form
the contact page.
Specifications and appearance of a magnet can be tested on our
modular calculator.
Orders submitted before 14:00 will be dispatched today!
SM 32x375 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their long-term stability, neodymium magnets provide the following advantages:
- Their power is durable, and after around ten years, it drops only by ~1% (according to research),
- They are very resistant to demagnetization caused by external magnetic fields,
- The use of a mirror-like silver surface provides a smooth finish,
- The outer field strength of the magnet shows elevated magnetic properties,
- Thanks to their enhanced temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
- Thanks to the freedom in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in diverse shapes and sizes, which increases their functional possibilities,
- Key role in advanced technical fields – they serve a purpose in computer drives, electric motors, healthcare devices or even technologically developed systems,
- Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in compact dimensions, which makes them useful in compact constructions
Disadvantages of neodymium magnets:
- They can break when subjected to a sudden impact. If the magnets are exposed to physical collisions, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and additionally reinforces its overall robustness,
- High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a humid environment. For outdoor use, we recommend using moisture-resistant magnets, such as those made of plastic,
- Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing holes directly in the magnet,
- Safety concern related to magnet particles may arise, if ingested accidentally, which is notable in the protection of children. It should also be noted that miniature parts from these products may complicate medical imaging when ingested,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Optimal lifting capacity of a neodymium magnet – what affects it?
The given lifting capacity of the magnet represents the maximum lifting force, calculated under optimal conditions, that is:
- with the use of low-carbon steel plate acting as a magnetic yoke
- having a thickness of no less than 10 millimeters
- with a polished side
- in conditions of no clearance
- under perpendicular detachment force
- under standard ambient temperature
Determinants of practical lifting force of a magnet
The lifting capacity of a magnet depends on in practice key elements, according to their importance:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, in contrast under parallel forces the holding force is lower. In addition, even a small distance {between} the magnet and the plate decreases the load capacity.
Handle Neodymium Magnets Carefully
The magnet is coated with nickel - be careful if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Avoid bringing neodymium magnets close to a phone or GPS.
Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
It is essential to keep neodymium magnets away from youngest children.
Neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.
Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can surprise you.
Familiarize yourself with our information to properly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
Neodymium magnets jump and touch each other mutually within a radius of several to around 10 cm from each other.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Neodymium magnets can demagnetize at high temperatures.
Despite the fact that magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Keep neodymium magnets away from people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Magnets made of neodymium are fragile as well as can easily break as well as get damaged.
Neodymium magnetic are extremely fragile, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.
Be careful!
To raise awareness of why neodymium magnets are so dangerous, see the article titled How dangerous are very strong neodymium magnets?.
