tel: +48 22 499 98 98

neodymium magnets

We offer red color magnetic Nd2Fe14B - our offer. All "magnets" on our website are in stock for immediate delivery (see the list). See the magnet pricing for more details see the magnet price list

Magnet for fishing F200 GOLD

Where to purchase powerful magnet? Magnet holders in solid and airtight steel enclosure are ideally suited for use in difficult, demanding climate conditions, including in the rain and snow check...

magnets with holders

Holders with magnets can be applied to improve manufacturing, underwater discoveries, or searching for space rocks from gold read...

Order is shipped if the order is placed before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x400 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130302

GTIN: 5906301812951

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

400 mm

Weight

2145 g

1193.10 with VAT / pcs + price for transport

970.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
970.00 ZŁ
1193.10 ZŁ
price from 5 pcs
873.00 ZŁ
1073.79 ZŁ

Can't decide what to choose?

Contact us by phone +48 22 499 98 98 otherwise get in touch using form the contact page.
Lifting power as well as shape of magnetic components can be reviewed with our magnetic mass calculator.

Same-day processing for orders placed before 14:00.

SM 32x400 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 32x400 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130302
GTIN
5906301812951
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
400 mm [±0,1 mm]
Weight
2145 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the power of neodymium magnets, placed in a casing made of stainless steel usually AISI304. Due to this, it is possible to effectively separate ferromagnetic elements from other materials. An important element of its operation is the use of repulsion of magnetic poles N and S, which causes magnetic substances to be targeted. The thickness of the embedded magnet and its structure pitch affect the power and range of the separator's operation.
Generally speaking, magnetic separators are designed to extract ferromagnetic particles. If the cans are made from ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers are used in food production to remove metallic contaminants, for example iron fragments or iron dust. Our rollers are built from acid-resistant steel, AISI 304, intended for use in food.
Magnetic rollers, often called magnetic separators, are employed in food production, metal separation as well as recycling. They help in removing iron dust in the course of the process of separating metals from other wastes.
Our magnetic rollers consist of neodymium magnets placed in a tube of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded openings, enabling quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars differ in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in two materials, N42 as well as N52.
Usually it is believed that the greater the magnet's power, the more effective. However, the effectiveness of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is more flat, the magnetic force lines are more compressed. By contrast, when the magnet is thick, the force lines are extended and extend over a greater distance.
For creating the casings of magnetic separators - rollers, frequently stainless steel is employed, especially types AISI 316, AISI 316L, and AISI 304.
In a salt water environment, type AISI 316 steel exhibits the best resistance due to its exceptional anti-corrosion properties.
Magnetic rollers stand out for their specific arrangement of poles and their ability to attract magnetic particles directly onto their surface, as opposed to other separators that often use complex filtration systems.
Technical designations and terms related to magnetic separators comprise amongst others polarity, magnetic induction, magnet pitch, as well as the steel type applied.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The result is checked in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. On the other hand, among the drawbacks, one can mention higher cost compared to other types of magnets and the need for regular maintenance.
To properly maintain of neodymium magnetic rollers, you should washing after each use, avoiding temperatures up to 80°C. The rollers our rollers have waterproofing IP67, so if they are leaky, the magnets inside can oxidize and lose their power. Magnetic field measurements should be carried out once every 24 months. Care should be taken, as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where the removal of iron metals and iron filings is essential.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • Their magnetic field is durable, and after approximately ten years, it drops only by ~1% (theoretically),
  • They remain magnetized despite exposure to strong external fields,
  • In other words, due to the shiny gold coating, the magnet obtains an stylish appearance,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for customized forming and precise design, these magnets can be produced in various shapes and sizes, greatly improving design adaptation,
  • Key role in new technology industries – they find application in hard drives, rotating machines, clinical machines as well as technologically developed systems,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in compact dimensions, which makes them useful in compact constructions

Disadvantages of NdFeB magnets:

  • They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to external force, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from damage and enhances its overall robustness,
  • High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to damp air can corrode. Therefore, for outdoor applications, we suggest waterproof types made of rubber,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is not feasible,
  • Possible threat due to small fragments may arise, especially if swallowed, which is important in the family environments. Additionally, tiny components from these magnets may hinder health screening when ingested,
  • In cases of tight budgets, neodymium magnet cost may not be economically viable,

Maximum holding power of the magnet – what affects it?

The given holding capacity of the magnet means the highest holding force, determined in ideal conditions, namely:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • with a thickness of minimum 10 mm
  • with a polished side
  • with zero air gap
  • with vertical force applied
  • under standard ambient temperature

Lifting capacity in real conditions – factors

The lifting capacity of a magnet depends on in practice key elements, from primary to secondary:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed using a smooth steel plate of optimal thickness (min. 20 mm), under perpendicular detachment force, in contrast under attempts to slide the magnet the holding force is lower. Moreover, even a slight gap {between} the magnet and the plate lowers the lifting capacity.

We Recommend Caution with Neodymium Magnets

  Neodymium magnets should not be around children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnetic are highly susceptible to damage, resulting in breaking.

Neodymium magnets are extremely delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a major injury may occur. Magnets, depending on their size, are able even cut off a finger or alternatively there can be a serious pressure or even a fracture.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Safety precautions!

So that know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous very strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98