SM 32x400 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130302
GTIN: 5906301812951
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
400 mm
Weight
2145 g
1193.10 ZŁ with VAT / pcs + price for transport
970.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Can't decide what to choose?
Contact us by phone
+48 888 99 98 98
alternatively get in touch by means of
form
through our site.
Specifications along with structure of neodymium magnets can be checked on our
modular calculator.
Same-day shipping for orders placed before 14:00.
SM 32x400 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their magnetic efficiency, neodymium magnets provide the following advantages:
- They retain their attractive force for around 10 years – the loss is just ~1% (according to analyses),
- They show superior resistance to demagnetization from external magnetic fields,
- In other words, due to the shiny gold coating, the magnet obtains an professional appearance,
- Magnetic induction on the surface of these magnets is very strong,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- Thanks to the freedom in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in various configurations, which broadens their usage potential,
- Wide application in advanced technical fields – they are utilized in hard drives, electric drives, diagnostic apparatus or even other advanced devices,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, in miniature format,
Disadvantages of magnetic elements:
- They may fracture when subjected to a powerful impact. If the magnets are exposed to external force, we recommend in a metal holder. The steel housing, in the form of a holder, protects the magnet from fracture and additionally enhances its overall resistance,
- They lose magnetic force at high temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a moist environment. If exposed to rain, we recommend using encapsulated magnets, such as those made of rubber,
- Limited ability to create precision features in the magnet – the use of a mechanical support is recommended,
- Potential hazard related to magnet particles may arise, when consumed by mistake, which is significant in the family environments. Moreover, small elements from these assemblies can hinder health screening after being swallowed,
- Due to a complex production process, their cost is above average,
Maximum holding power of the magnet – what contributes to it?
The given lifting capacity of the magnet corresponds to the maximum lifting force, determined under optimal conditions, namely:
- with mild steel, serving as a magnetic flux conductor
- with a thickness of minimum 10 mm
- with a refined outer layer
- with zero air gap
- in a perpendicular direction of force
- under standard ambient temperature
Practical aspects of lifting capacity – factors
Practical lifting force is determined by elements, listed from the most critical to the less significant:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was tested on the plate surface of 20 mm thickness, when a perpendicular force was applied, in contrast under attempts to slide the magnet the load capacity is reduced by as much as 5 times. Additionally, even a small distance {between} the magnet’s surface and the plate reduces the lifting capacity.
Precautions with Neodymium Magnets
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their power can surprise you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
Magnets will attract each other within a distance of several to around 10 cm from each other. Remember not to place fingers between magnets or in their path when attract. Magnets, depending on their size, can even cut off a finger or alternatively there can be a significant pressure or even a fracture.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
Neodymium magnets generate intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets should not be around children.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Magnets made of neodymium are extremely fragile, they easily break as well as can become damaged.
Neodymium magnets are delicate and will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Neodymium magnets can become demagnetized at high temperatures.
Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
People with pacemakers are advised to avoid neodymium magnets.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Keep neodymium magnets away from GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Pay attention!
To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are strong neodymium magnets?.
