tel: +48 22 499 98 98

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our offer. All "magnets" on our website are available for immediate purchase (check the list). Check out the magnet pricing for more details check the magnet price list

Magnets for water searching F300 GOLD

Where to purchase very strong magnet? Magnetic holders in solid and airtight steel enclosure are perfect for use in challenging weather, including in the rain and snow more information...

magnets with holders

Holders with magnets can be applied to enhance manufacturing, exploring underwater areas, or searching for meteors from gold more information...

We promise to ship ordered magnets on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow!

SM 32x400 [2xM8] / N42 - magnetic roller

magnetic separator

catalog number 130302

GTIN: 5906301812951

5.0

diameter Ø

32 mm [±0,1 mm]

height

400 mm [±0,1 mm]

max. temperature

≤ 80 °C

1193.10 PLN gross price (including VAT) / pcs +

970.00 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
970.00 PLN
1193.10 PLN
price from 3 pcs
921.50 PLN
1133.44 PLN
price from 5 pcs
873.00 PLN
1073.79 PLN

Want a better price?

Call us tel: +48 888 99 98 98 or contact us through form on the contact page. You can check the mass and the shape of magnet in our magnetic mass calculator magnetic calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: magnetic separator 32x400 [2xM8] / N42

Characteristics: magnetic separator 32x400 [2xM8] / N42
Properties
Values
catalog number
130302
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
32 mm [±0,1 mm]
height
400 mm [±0,1 mm]
max. temperature ?
≤ 80 °C
weight
2145.00 g
execution tolerance
± 0.1 mm
rodzaj materiału
AISI 304 - bezpieczna dla żywności
rodzaj magnesów
NdFeB N42
ilość gwintów
2x [M8] wewnętrzne
biegunowość
obwodowa - 15 nadbiegunników
indukcja magnetyczna
~ 8 000 Gauss [±5%]
max. temp. pracy
poniżej ≤ 80°C
grubość rury osłonowej
1 mm

Magnetic properties of the material N42

material characteristics N42
Properties
Values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
40-42
BH max MGOe
energy density [Min. - Max.]
318-334
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
The main mechanism of the magnetic separator is the use of neodymium magnets, which are placed in a construction made of stainless steel usually AISI304. Due to this, it is possible to precisely remove ferromagnetic elements from the mixture. A fundamental component of its operation is the repulsion of N and S poles of neodymium magnets, which causes magnetic substances to be collected. The thickness of the embedded magnet and its structure pitch determine the power and range of the separator's operation.
Generally speaking, magnetic separators are designed to extract ferromagnetic elements. If the cans are ferromagnetic, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers are employed in the food sector for the elimination of metallic contaminants, including iron fragments or iron dust. Our rods are made from acid-resistant steel, EN 1.4301, intended for use in food.
Magnetic rollers, otherwise magnetic separators, find application in metal separation, food production as well as recycling. They help in eliminating iron dust during the process of separating metals from other materials.
Our magnetic rollers are composed of a neodymium magnet placed in a stainless steel tube casing made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded openings, which enables quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars differ in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in materials, N42 as well as N52.
Usually it is believed that the stronger the magnet, the better. But, the value of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and expected needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is more flat, the magnetic force lines are more compressed. Otherwise, in the case of a thicker magnet, the force lines are longer and reach further.
For creating the casings of magnetic separators - rollers, most often stainless steel is used, particularly types AISI 316, AISI 316L, and AISI 304.
In a salt water environment, type AISI 316 steel is highly recommended thanks to its excellent corrosion resistance.
Magnetic rollers are characterized by their unique configuration of poles and their ability to attract magnetic substances directly onto their surface, as opposed to other separators that may utilize more complicated filtration systems.
Technical designations and terms related to magnetic separators include amongst others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value near the magnetic pole. The result is checked in a value table - the lowest is N30. All designations less than N27 or N25 indicate recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer a range of benefits such as excellent separation efficiency, strong magnetic field, and durability. Disadvantages may include the requirement for frequent cleaning, greater weight, and potential installation difficulties.
For proper maintenance of neodymium magnetic rollers, it is suggested to clean them regularly from contaminants, avoid extremal temperatures above 80 degrees, and washing regularly, avoiding temperatures up to 80°C. The rollers have an IP67 waterproof rating, so if they are not watertight, the magnets inside may oxidize and weaken. Magnetic field measurements are advised to be conducted once every 24 months. Care should be taken as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it can be worn down, which, in turn, can result in issues with the magnetic rod becoming unsealed and product contamination. The Roller operating range equals its diameter, fi25mm is approximately 25mm active range, while fi32 is about 40mm.

Recommended articles for purchase

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense strength, neodymium magnets have the following advantages:

  • They do not lose strength over time - after 10 years, their strength decreases by only ~1% (theoretically),
  • They protect against demagnetization caused by external magnetic field extremely well,
  • Thanks to the shiny finish and nickel, gold, or silver coating, they have an aesthetic appearance,
  • They exhibit very high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve high thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • Thanks to the flexibility in shaping or the ability to adapt to specific requirements – neodymium magnets can be produced in a wide range of shapes and sizes, which expands the range of their possible uses.
  • Key role in the industry of new technologies – are used in hard drives, electric drive mechanisms, medical devices and various technologically advanced devices.

Disadvantages of neodymium magnets:

  • They can break as they are extremely fragile when subjected to a powerful impact. If the magnets are exposed to impacts, it is suggested using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts and also increases its overall strength,
  • Magnets lose their strength due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent loss in strength (although it is worth noting that this is dependent on the form and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
  • The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
  • Potential hazard associated with microscopic parts of magnets can be dangerous, when accidentally ingested, which becomes significant in the context of children's health. Furthermore, small elements of these devices can hinder the diagnostic process when they are in the body.

Handle Neodymium Magnets with Caution

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

Neodymium magnets generate strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets are the most powerful magnets ever created, and their strength can shock you.

Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.

Neodymium magnetic are especially delicate, which leads to shattering.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

 It is important to keep neodymium magnets out of reach from children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Avoid bringing neodymium magnets close to a phone or GPS.

Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

If you have a finger between or on the path of attracting magnets, there may be a severe cut or even a fracture.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

So you are aware of why neodymium magnets are so dangerous, see the article titled How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98