e-mail: bok@dhit.pl

neodymium magnets

We provide red color magnetic Nd2Fe14B - our store's offer. Practically all magnesy on our website are in stock for immediate purchase (check the list). Check out the magnet price list for more details see the magnet price list

Magnets for treasure hunters F200 GOLD

Where to purchase powerful magnet? Magnetic holders in solid and airtight steel enclosure are ideally suited for use in difficult weather conditions, including during snow and rain see more...

magnets with holders

Holders with magnets can be used to improve production, exploring underwater areas, or locating space rocks from gold read...

Shipping is shipped if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x400 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130302

GTIN: 5906301812951

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

400 mm

Weight

2145 g

1 193.10 with VAT / pcs + price for transport

970.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
970.00 ZŁ
1 193.10 ZŁ
price from 5 pcs
873.00 ZŁ
1 073.79 ZŁ

Want to negotiate?

Pick up the phone and ask +48 22 499 98 98 if you prefer contact us via form our website.
Lifting power as well as form of a magnet can be estimated on our force calculator.

Order by 14:00 and we’ll ship today!

SM 32x400 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 32x400 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130302
GTIN
5906301812951
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
400 mm [±0,1 mm]
Weight
2145 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The main mechanism of the magnetic separator is the use of neodymium magnets, which are welded in a casing made of stainless steel mostly AISI304. In this way, it is possible to effectively remove ferromagnetic elements from different substances. A key aspect of its operation is the use of repulsion of N and S poles of neodymium magnets, which causes magnetic substances to be targeted. The thickness of the magnet and its structure pitch affect the power and range of the separator's operation.
Generally speaking, magnetic separators are used to segregate ferromagnetic particles. If the cans are ferromagnetic, the separator will effectively segregate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers find application in the food sector for the elimination of metallic contaminants, including iron fragments or iron dust. Our rods are constructed from acid-resistant steel, EN 1.4301, suitable for use in food.
Magnetic rollers, otherwise cylindrical magnets, are used in metal separation, food production as well as recycling. They help in extracting iron dust during the process of separating metals from other materials.
Our magnetic rollers are composed of neodymium magnets embedded in a stainless steel tube cylinder made of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar can be with M8 threaded openings, which enables easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars differ in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in materials, N42 as well as N52.
Often it is believed that the greater the magnet's power, the more efficient it is. However, the strength of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and expected needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is more flat, the magnetic force lines are short. On the other hand, when the magnet is thick, the force lines will be longer and reach further.
For making the casings of magnetic separators - rollers, most often stainless steel is used, especially types AISI 316, AISI 316L, and AISI 304.
In a saltwater contact, AISI 316 steel exhibits the best resistance thanks to its exceptional anti-corrosion properties.
Magnetic rollers stand out for their specific arrangement of poles and their ability to attract magnetic particles directly onto their surface, as opposed to other separators that often use more complicated filtration systems.
Technical designations and terms pertaining to magnetic separators include among others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The result is verified in a value table - the lowest is N30. All designations below N27 or N25 suggest recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. However, some of the downsides may involve higher cost compared to other types of magnets and the need for regular maintenance.
By ensuring proper maintenance of neodymium magnetic rollers, it’s worth regularly cleaning them from deposits, avoiding extreme temperatures up to 80°C, and shielding them from moisture if the threads are not sealed – in ours, they are. The rollers feature waterproofing IP67, so if they are leaky, the magnets inside can rust and lose their power. Magnetic field measurements is recommended be carried out once every 24 months. Care should be taken, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, which are used to remove metal contaminants from bulk and granular materials. They are used in the food industry, recycling, and plastic processing, where the removal of iron metals and iron filings is essential.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their tremendous magnetic power, neodymium magnets offer the following advantages:

  • They have stable power, and over nearly 10 years their attraction force decreases symbolically – ~1% (in testing),
  • They protect against demagnetization induced by ambient magnetic influence very well,
  • In other words, due to the metallic silver coating, the magnet obtains an aesthetic appearance,
  • They possess strong magnetic force measurable at the magnet’s surface,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • The ability for custom shaping or customization to specific needs – neodymium magnets can be manufactured in multiple variants of geometries, which amplifies their functionality across industries,
  • Significant impact in cutting-edge sectors – they find application in data storage devices, electromechanical systems, clinical machines as well as sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in small dimensions, which makes them ideal in small systems

Disadvantages of magnetic elements:

  • They can break when subjected to a strong impact. If the magnets are exposed to external force, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time reinforces its overall robustness,
  • They lose power at extreme temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a damp environment, especially when used outside, we recommend using waterproof magnets, such as those made of polymer,
  • Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing fine shapes directly in the magnet,
  • Safety concern due to small fragments may arise, if ingested accidentally, which is crucial in the context of child safety. Additionally, miniature parts from these magnets may hinder health screening once in the system,
  • In cases of large-volume purchasing, neodymium magnet cost is a challenge,

Maximum lifting force for a neodymium magnet – what it depends on?

The given pulling force of the magnet corresponds to the maximum force, calculated under optimal conditions, namely:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • in conditions of no clearance
  • in a perpendicular direction of force
  • in normal thermal conditions

Lifting capacity in real conditions – factors

In practice, the holding capacity of a magnet is conditioned by the following aspects, in descending order of importance:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured with the use of a steel plate with a smooth surface of suitable thickness (min. 20 mm), under perpendicular detachment force, however under parallel forces the lifting capacity is smaller. Moreover, even a small distance {between} the magnet’s surface and the plate lowers the holding force.

Exercise Caution with Neodymium Magnets

Neodymium magnets are among the most powerful magnets on Earth. The surprising force they generate between each other can shock you.

Familiarize yourself with our information to properly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.

Do not bring neodymium magnets close to GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnetic are extremely delicate, they easily crack and can become damaged.

Neodymium magnetic are extremely fragile, and by joining them in an uncontrolled manner, they will break. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Keep neodymium magnets away from the wallet, computer, and TV.

Neodymium magnets produce intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets should not be near people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

  Do not give neodymium magnets to youngest children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets may crack or alternatively crumble with uncontrolled connecting to each other. You can't move them to each other. At a distance less than 10 cm you should hold them very strongly.

Be careful!

In order to illustrate why neodymium magnets are so dangerous, see the article - How very dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98