tel: +48 888 99 98 98

neodymium magnets

We provide red color magnetic Nd2Fe14B - our offer. Practically all magnesy neodymowe in our store are available for immediate delivery (check the list). Check out the magnet pricing for more details check the magnet price list

Magnets for water searching F400 GOLD

Where to purchase strong neodymium magnet? Holders with magnets in solid and airtight enclosure are ideally suited for use in difficult climate conditions, including during rain and snow see...

magnets with holders

Magnetic holders can be used to facilitate manufacturing, exploring underwater areas, or searching for meteorites from gold more information...

Enjoy shipping of your order on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available Ships today (order by 14:00)

SM 32x425 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130464

GTIN: 5906301813354

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

425 mm

Weight

2353 g

1340.70 with VAT / pcs + price for transport

1090.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1090.00 ZŁ
1340.70 ZŁ
price from 5 pcs
981.00 ZŁ
1206.63 ZŁ

Not sure where to buy?

Pick up the phone and ask +48 888 99 98 98 if you prefer contact us by means of form the contact section.
Strength and shape of magnets can be analyzed on our magnetic calculator.

Orders placed before 14:00 will be shipped the same business day.

SM 32x425 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x425 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130464
GTIN
5906301813354
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
425 mm [±0,1 mm]
Weight
2353 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

This product serves to catch ferromagnetic impurities from raw materials. It is used for cleaning bulk products (flour, sugar, granules) and liquids (oils, juices). High magnetic induction allows catching the finest iron particles.
The rod consists of a casing tube made of acid-resistant steel (AISI 304/316). The core is a magnetic circuit generating high induction. Thanks to this, the rod is durable and hygienic.
Due to high power, direct removal of filings can be troublesome. The most effective method is using adhesive tape to wrap the dirt and pull it off. For easier maintenance, consider a system with a cleaning sleeve.
The Gauss value tells us how effectively the magnet will catch small impurities. For basic iron protection, standard power is enough. High Power versions (~12000-14000 Gs) are necessary to catch metal dust and stainless steel after processing.
We can produce a rod with any mounting end. You can choose a mounting method compatible with your project. Contact us for a quote on non-standard dimensions.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • They do not lose their magnetism, even after around ten years – the reduction of power is only ~1% (according to tests),
  • They are extremely resistant to demagnetization caused by external magnetic fields,
  • Thanks to the polished finish and nickel coating, they have an visually attractive appearance,
  • Magnetic induction on the surface of these magnets is notably high,
  • Thanks to their enhanced temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
  • The ability for custom shaping and adaptation to specific needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which amplifies their functionality across industries,
  • Key role in advanced technical fields – they serve a purpose in hard drives, electric motors, medical equipment along with other advanced devices,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, with minimal size,

Disadvantages of rare earth magnets:

  • They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to shocks, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage and enhances its overall resistance,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a wet environment, especially when used outside, we recommend using encapsulated magnets, such as those made of non-metallic materials,
  • Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing fine shapes directly in the magnet,
  • Health risk linked to microscopic shards may arise, in case of ingestion, which is important in the protection of children. It should also be noted that miniature parts from these devices have the potential to complicate medical imaging if inside the body,
  • High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which may limit large-scale applications

Maximum lifting force for a neodymium magnet – what contributes to it?

The given pulling force of the magnet represents the maximum force, assessed in a perfect environment, that is:

  • with mild steel, used as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • in conditions of no clearance
  • in a perpendicular direction of force
  • at room temperature

Practical lifting capacity: influencing factors

The lifting capacity of a magnet is determined by in practice the following factors, from primary to secondary:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, whereas under parallel forces the holding force is lower. Moreover, even a small distance {between} the magnet and the plate lowers the holding force.

Safety Precautions

 It is essential to maintain neodymium magnets out of reach from youngest children.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Neodymium magnets generate intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Magnets made of neodymium are fragile as well as can easily break as well as get damaged.

Neodymium magnetic are fragile as well as will break if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Neodymium magnets are among the strongest magnets on Earth. The surprising force they generate between each other can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Neodymium magnets can demagnetize at high temperatures.

Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

In the case of holding a finger in the path of a neodymium magnet, in that situation, a cut or even a fracture may occur.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Safety precautions!

So that know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous very powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98