tel: +48 22 499 98 98

neodymium magnets

We provide red color magnets Nd2Fe14B - our proposal. Practically all magnesy in our store are available for immediate delivery (check the list). See the magnet pricing for more details see the magnet price list

Magnet for fishing F300 GOLD

Where to buy powerful neodymium magnet? Holders with magnets in solid and airtight steel enclosure are excellent for use in variable and difficult weather, including during rain and snow see more...

magnets with holders

Magnetic holders can be applied to enhance production processes, underwater discoveries, or finding meteorites from gold more information...

We promise to ship your order on the same day before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x425 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130464

GTIN: 5906301813354

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

425 mm

Weight

2353 g

1 340.70 with VAT / pcs + price for transport

1 090.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1 090.00 ZŁ
1 340.70 ZŁ
price from 3 pcs
1 035.50 ZŁ
1 273.66 ZŁ
price from 5 pcs
981.00 ZŁ
1 206.63 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

SM 32x425 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x425 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130464
GTIN
5906301813354
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
425 mm [±0,1 mm]
Weight
2353 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device rod magnetic is based on the use of neodymium magnets, which are placed in a casing made of stainless steel mostly AISI304. Due to this, it is possible to efficiently remove ferromagnetic particles from other materials. A key aspect of its operation is the repulsion of magnetic poles N and S, which causes magnetic substances to be targeted. The thickness of the embedded magnet and its structure pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators serve to extract ferromagnetic particles. If the cans are made from ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers find application in food production to remove metallic contaminants, including iron fragments or iron dust. Our rods are built from durable acid-resistant steel, AISI 304, suitable for contact with food.
Magnetic rollers, often called cylindrical magnets, are employed in food production, metal separation as well as recycling. They help in removing iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers are built with neodymium magnets embedded in a tube of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar will be with M8 threaded openings, enabling easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars differ in terms of magnetic force lines, flux density and the field of the magnetic field. We produce them in two materials, N42 and N52.
Usually it is believed that the greater the magnet's power, the more efficient it is. Nevertheless, the value of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and expected needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is thin, the magnetic force lines are more compressed. By contrast, in the case of a thicker magnet, the force lines are extended and extend over a greater distance.
For making the casings of magnetic separators - rollers, most often stainless steel is employed, especially types AISI 316, AISI 316L, and AISI 304.
In a saltwater environment, type AISI 316 steel is recommended due to its outstanding anti-corrosion properties.
Magnetic rollers are characterized by their specific arrangement of poles and their ability to attract magnetic particles directly onto their surface, in contrast to other separators that may utilize complex filtration systems.
Technical designations and terms pertaining to magnetic separators comprise amongst others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The result is checked in a value table - the lowest is N30. All designations less than N27 or N25 indicate recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. However, some of the downsides may involve the need for regular cleaning, higher cost, and potential installation challenges.
To properly maintain of neodymium magnetic rollers, it is recommended regularly cleaning them from contaminants, avoiding high temperatures above 80 degrees, and shielding them from moisture if the threads are not sealed – in ours, they are. The rollers feature waterproofing IP67, so if they are leaky, the magnets inside can oxidize and weaken. Magnetic field measurements should be carried out once every 24 months. Caution should be taken during use, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, which are used to remove metal contaminants from bulk and granular materials. They are applied in industries such as food processing, ceramics, and recycling, where the removal of iron metals and iron filings is essential.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense power, neodymium magnets have the following advantages:

  • They do not lose power over time - after about 10 years, their strength decreases by only ~1% (theoretically),
  • They protect against demagnetization caused by external magnetic field extremely well,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They exhibit extremely high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve high thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • The ability for precise shaping and customization to specific needs – neodymium magnets can be produced in many variants of shapes and sizes, which amplifies their universality in usage.
  • Wide application in the industry of new technologies – are utilized in computer drives, electric motors, medical apparatus and very advanced devices.

Disadvantages of neodymium magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • High temperatures can reduce the strength of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent loss in strength (although it is dependent on the shape and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
  • They rust in a humid environment - during outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Potential hazard arising from small pieces of magnets pose a threat, in case of ingestion, which is particularly important in the context of children's health. It's also worth noting that miniscule components of these devices are able to be problematic in medical diagnosis in case of swallowing.

Exercise Caution with Neodymium Magnets

Neodymium magnets are the strongest magnets ever invented. Their strength can surprise you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent damage to the magnets.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

In the case of placing a finger in the path of a neodymium magnet, in such a case, a cut or even a fracture may occur.

Neodymium magnetic are extremely fragile, resulting in breaking.

Neodymium magnets are extremely delicate, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Pay attention!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98