tel: +48 888 99 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our store's offer. All magnesy in our store are in stock for immediate purchase (check the list). See the magnet price list for more details see the magnet price list

Magnet for water searching F400 GOLD

Where to buy powerful neodymium magnet? Holders with magnets in airtight, solid enclosure are perfect for use in difficult, demanding weather conditions, including snow and rain read...

magnetic holders

Holders with magnets can be applied to enhance manufacturing, exploring underwater areas, or searching for meteorites made of metal more information...

We promise to ship ordered magnets if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x425 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130464

GTIN: 5906301813354

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

425 mm

Weight

2353 g

1 340.70 with VAT / pcs + price for transport

1 090.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1 090.00 ZŁ
1 340.70 ZŁ
price from 3 pcs
1 035.50 ZŁ
1 273.66 ZŁ
price from 5 pcs
981.00 ZŁ
1 206.63 ZŁ

Need advice?

Call us now +48 22 499 98 98 alternatively get in touch through our online form through our site.
Lifting power along with form of a magnet can be reviewed on our power calculator.

Same-day shipping for orders placed before 14:00.

SM 32x425 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x425 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130464
GTIN
5906301813354
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
425 mm [±0,1 mm]
Weight
2353 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the power of neodymium magnets, which are placed in a construction made of stainless steel mostly AISI304. Due to this, it is possible to effectively remove ferromagnetic particles from other materials. A key aspect of its operation is the repulsion of N and S poles of neodymium magnets, which allows magnetic substances to be targeted. The thickness of the magnet and its structure pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators serve to segregate ferromagnetic particles. If the cans are ferromagnetic, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers are used in food production for the elimination of metallic contaminants, for example iron fragments or iron dust. Our rollers are made from durable acid-resistant steel, AISI 304, intended for contact with food.
Magnetic rollers, otherwise magnetic separators, find application in metal separation, food production as well as recycling. They help in removing iron dust in the course of the process of separating metals from other wastes.
Our magnetic rollers consist of neodymium magnets placed in a stainless steel tube cylinder made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded openings, enabling simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars stand out in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in two materials, N42 as well as N52.
Often it is believed that the stronger the magnet, the more effective. Nevertheless, the strength of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and specific needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is thin, the magnetic force lines are short. By contrast, when the magnet is thick, the force lines will be extended and extend over a greater distance.
For constructing the casings of magnetic separators - rollers, most often stainless steel is employed, particularly types AISI 316, AISI 316L, and AISI 304.
In a salt water contact, AISI 316 steel is highly recommended due to its exceptional anti-corrosion properties.
Magnetic bars are characterized by their unique configuration of poles and their ability to attract magnetic substances directly onto their surface, in contrast to other separators that may utilize more complicated filtration systems.
Technical designations and terms pertaining to magnetic separators include amongst others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The result is verified in a value table - the lowest is N30. All designations below N27 or N25 suggest recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic rollers offer many advantages, including excellent separation efficiency, strong magnetic field, and durability. Disadvantages may include the requirement for frequent cleaning, greater weight, and potential installation difficulties.
To properly maintain of neodymium magnetic rollers, it’s worth regularly cleaning them from deposits, avoiding extreme temperatures up to 80°C, and protecting them from moisture if the threads are not sealed – in ours, they are. The rollers feature waterproofing IP67, so if they are leaky, the magnets inside can oxidize and weaken. Magnetic field measurements should be carried out every two years. Care should be taken, as it’s possible of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, which are used to remove metal contaminants from bulk and granular materials. They are used in the food industry, recycling, and plastic processing, where metal separation is crucial.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their strong holding force, neodymium magnets have these key benefits:

  • They have unchanged lifting capacity, and over more than ten years their performance decreases symbolically – ~1% (in testing),
  • Their ability to resist magnetic interference from external fields is notable,
  • Thanks to the glossy finish and silver coating, they have an elegant appearance,
  • They exhibit superior levels of magnetic induction near the outer area of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • Thanks to the freedom in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in different geometries, which expands their application range,
  • Significant impact in new technology industries – they serve a purpose in hard drives, electromechanical systems, medical equipment along with other advanced devices,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in compact dimensions, which makes them ideal in compact constructions

Disadvantages of neodymium magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to shocks, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time increases its overall robustness,
  • High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to damp air can degrade. Therefore, for outdoor applications, it's best to use waterproof types made of rubber,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing threads directly in the magnet,
  • Possible threat linked to microscopic shards may arise, if ingested accidentally, which is crucial in the protection of children. Furthermore, minuscule fragments from these magnets can disrupt scanning when ingested,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Precautions

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

 Keep neodymium magnets far from children.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

If the joining of neodymium magnets is not controlled, then they may crumble and crack. Remember not to move them to each other or have them firmly in hands at a distance less than 10 cm.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Neodymium magnets can demagnetize at high temperatures.

While Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Neodymium magnetic are delicate and can easily break as well as get damaged.

Neodymium magnetic are delicate as well as will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

People with pacemakers are advised to avoid neodymium magnets.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Keep neodymium magnets away from TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Pay attention!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98