e-mail: bok@dhit.pl

neodymium magnets

We offer red color magnetic Nd2Fe14B - our store's offer. All "magnets" on our website are available for immediate delivery (see the list). Check out the magnet pricing for more details see the magnet price list

Magnets for treasure hunters F300 GOLD

Where to buy powerful neodymium magnet? Magnetic holders in airtight and durable steel casing are excellent for use in challenging climate conditions, including snow and rain read...

magnets with holders

Magnetic holders can be used to enhance manufacturing, underwater discoveries, or locating meteorites from gold more information...

Shipping is shipped on the day of purchase by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x100 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130356

GTIN: 5906301813040

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

100 mm

Weight

554 g

381.30 with VAT / pcs + price for transport

310.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
310.00 ZŁ
381.30 ZŁ
price from 10 pcs
294.50 ZŁ
362.24 ZŁ
price from 15 pcs
279.00 ZŁ
343.17 ZŁ

Want to talk magnets?

Call us now +48 22 499 98 98 or contact us through request form through our site.
Specifications and structure of magnetic components can be analyzed using our power calculator.

Orders submitted before 14:00 will be dispatched today!

SM 32x100 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x100 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130356
GTIN
5906301813040
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
100 mm [±0,1 mm]
Weight
554 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the power of neodymium magnets, which are welded in a casing made of stainless steel usually AISI304. Due to this, it is possible to precisely remove ferromagnetic elements from other materials. An important element of its operation is the use of repulsion of magnetic poles N and S, which causes magnetic substances to be collected. The thickness of the magnet and its structure's pitch affect the power and range of the separator's operation.
Generally speaking, magnetic separators serve to extract ferromagnetic elements. If the cans are made from ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers find application in the food sector for the elimination of metallic contaminants, such as iron fragments or iron dust. Our rods are made from acid-resistant steel, EN 1.4301, suitable for use in food.
Magnetic rollers, otherwise cylindrical magnets, are employed in food production, metal separation as well as waste processing. They help in extracting iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers are composed of neodymium magnets anchored in a stainless steel tube casing made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar will be with M8 threaded holes - 18 mm, which enables quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars differ in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in materials, N42 and N52.
Often it is believed that the greater the magnet's power, the more effective. Nevertheless, the effectiveness of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and expected needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is thin, the magnetic force lines will be more compressed. By contrast, in the case of a thicker magnet, the force lines are longer and reach further.
For constructing the casings of magnetic separators - rollers, usually stainless steel is employed, especially types AISI 316, AISI 316L, and AISI 304.
In a saltwater environment, AISI 316 steel is recommended thanks to its exceptional anti-corrosion properties.
Magnetic rollers are characterized by their specific arrangement of poles and their ability to attract magnetic substances directly onto their surface, in contrast to other devices that often use more complicated filtration systems.
Technical designations and terms related to magnetic separators include amongst others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The result is checked in a value table - the lowest is N30. All designations below N27 or N25 suggest recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer a range of benefits such as excellent separation efficiency, strong magnetic field, and durability. On the other hand, among the drawbacks, one can mention the requirement for frequent cleaning, greater weight, and potential installation difficulties.
By ensuring proper maintenance of neodymium magnetic rollers, it’s worth regularly cleaning them from contaminants, avoiding high temperatures above 80 degrees, and shielding them from moisture if the threads are not sealed – in ours, they are. The rollers our rollers have waterproofing IP67, so if they are leaky, the magnets inside can oxidize and lose their power. Magnetic field measurements is recommended be carried out every two years. Care should be taken, as it’s possible of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, used for separating ferromagnetic contaminants from raw materials. They are used in the food industry, recycling, and plastic processing, where metal separation is crucial.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their strong power, neodymium magnets have these key benefits:

  • They have constant strength, and over around ten years their attraction force decreases symbolically – ~1% (in testing),
  • They protect against demagnetization induced by ambient magnetic influence very well,
  • Thanks to the polished finish and nickel coating, they have an visually attractive appearance,
  • Magnetic induction on the surface of these magnets is impressively powerful,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
  • The ability for precise shaping or customization to custom needs – neodymium magnets can be manufactured in many forms and dimensions, which enhances their versatility in applications,
  • Key role in new technology industries – they find application in data storage devices, electric motors, healthcare devices as well as technologically developed systems,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to mechanical hits, it is advisable to use in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage and enhances its overall robustness,
  • They lose magnetic force at high temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber,
  • Limited ability to create complex details in the magnet – the use of a mechanical support is recommended,
  • Health risk linked to microscopic shards may arise, when consumed by mistake, which is notable in the family environments. Additionally, minuscule fragments from these products can interfere with diagnostics when ingested,
  • Due to a complex production process, their cost is considerably higher,

Maximum lifting capacity of the magnetwhat contributes to it?

The given holding capacity of the magnet means the highest holding force, measured under optimal conditions, specifically:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • with zero air gap
  • in a perpendicular direction of force
  • in normal thermal conditions

Determinants of practical lifting force of a magnet

The lifting capacity of a magnet is influenced by in practice the following factors, from primary to secondary:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was measured on the plate surface of 20 mm thickness, when a perpendicular force was applied, whereas under shearing force the lifting capacity is smaller. Moreover, even a small distance {between} the magnet and the plate decreases the load capacity.

Be Cautious with Neodymium Magnets

Neodymium magnets are known for being fragile, which can cause them to become damaged.

Neodymium magnets are highly fragile, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets attract each other within a distance of several to around 10 cm from each other. Remember not to place fingers between magnets or in their path when they attract. Magnets, depending on their size, are able even cut off a finger or alternatively there can be a severe pressure or a fracture.

Neodymium magnets can become demagnetized at high temperatures.

Even though magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

 It is important to maintain neodymium magnets out of reach from youngest children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Neodymium magnets produce intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Do not bring neodymium magnets close to GPS and smartphones.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their power can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Exercise caution!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98