e-mail: bok@dhit.pl

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our proposal. Practically all magnesy neodymowe on our website are available for immediate delivery (see the list). See the magnet pricing for more details check the magnet price list

Magnets for water searching F200 GOLD

Where to purchase strong magnet? Holders with magnets in airtight, solid steel enclosure are ideally suited for use in difficult, demanding weather, including during rain and snow see more...

magnets with holders

Holders with magnets can be used to improve manufacturing, underwater discoveries, or finding space rocks made of ore check...

We promise to ship your order on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x100 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130356

GTIN: 5906301813040

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

100 mm

Weight

554 g

381.30 with VAT / pcs + price for transport

310.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
310.00 ZŁ
381.30 ZŁ
price from 10 pcs
294.50 ZŁ
362.24 ZŁ
price from 15 pcs
279.00 ZŁ
343.17 ZŁ

Need advice?

Call us +48 22 499 98 98 alternatively contact us through request form the contact section.
Lifting power along with structure of neodymium magnets can be estimated using our modular calculator.

Order by 14:00 and we’ll ship today!

SM 32x100 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x100 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130356
GTIN
5906301813040
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
100 mm [±0,1 mm]
Weight
554 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The main mechanism of the magnetic separator is the use of neodymium magnets, which are embedded in a construction made of stainless steel mostly AISI304. In this way, it is possible to efficiently remove ferromagnetic particles from other materials. A fundamental component of its operation is the use of repulsion of N and S poles of neodymium magnets, which allows magnetic substances to be attracted. The thickness of the magnet and its structure pitch affect the power and range of the separator's operation.
Generally speaking, magnetic separators are designed to segregate ferromagnetic particles. If the cans are made from ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers are used in food production for the elimination of metallic contaminants, for example iron fragments or iron dust. Our rollers are constructed from durable acid-resistant steel, EN 1.4301, approved for use in food.
Magnetic rollers, otherwise cylindrical magnets, are used in food production, metal separation as well as recycling. They help in extracting iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers are composed of neodymium magnets placed in a stainless steel tube cylinder of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar will be with M8 threaded holes - 18 mm, enabling quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars stand out in terms of magnetic force lines, flux density and the area of operation of the magnetic field. We produce them in materials, N42 as well as N52.
Usually it is believed that the greater the magnet's power, the better. But, the strength of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and expected needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is more flat, the magnetic force lines are more compressed. By contrast, in the case of a thicker magnet, the force lines are extended and extend over a greater distance.
For constructing the casings of magnetic separators - rollers, frequently stainless steel is utilized, especially types AISI 304, AISI 316, and AISI 316L.
In a salt water contact, AISI 316 steel is highly recommended thanks to its outstanding corrosion resistance.
Magnetic bars are characterized by their unique configuration of poles and their ability to attract magnetic particles directly onto their surface, as opposed to other devices that may utilize complex filtration systems.
Technical designations and terms related to magnetic separators include amongst others magnet pitch, polarity, and magnetic induction, as well as the steel type applied.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value near the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including excellent separation efficiency, strong magnetic field, and durability. However, some of the downsides may involve higher cost compared to other types of magnets and the need for regular maintenance.
By ensuring proper maintenance of neodymium magnetic rollers, it is recommended cleaning regularly, avoiding temperatures up to 80°C. The rollers our rollers have waterproofing IP67, so if they are leaky, the magnets inside can oxidize and weaken. Testing of the rollers is recommended be carried out every two years. Caution should be taken during use, as it’s possible of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where the removal of iron metals and iron filings is essential.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their magnetic capacity, neodymium magnets provide the following advantages:

  • They do not lose their strength around ten years – the decrease of strength is only ~1% (based on measurements),
  • They protect against demagnetization induced by external magnetic fields very well,
  • By applying a bright layer of gold, the element gains a modern look,
  • The outer field strength of the magnet shows elevated magnetic properties,
  • With the right combination of compounds, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the design),
  • With the option for fine forming and precise design, these magnets can be produced in multiple shapes and sizes, greatly improving engineering flexibility,
  • Key role in modern technologies – they find application in data storage devices, electric drives, healthcare devices as well as other advanced devices,
  • Thanks to their power density, small magnets offer high magnetic performance, in miniature format,

Disadvantages of magnetic elements:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to physical collisions, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage and additionally strengthens its overall resistance,
  • High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to humidity can rust. Therefore, for outdoor applications, we recommend waterproof types made of plastic,
  • Limited ability to create precision features in the magnet – the use of a external casing is recommended,
  • Health risk due to small fragments may arise, in case of ingestion, which is significant in the health of young users. Furthermore, minuscule fragments from these assemblies have the potential to hinder health screening after being swallowed,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Maximum holding power of the magnet – what contributes to it?

The given strength of the magnet corresponds to the optimal strength, measured in the best circumstances, specifically:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with zero air gap
  • with vertical force applied
  • at room temperature

Practical lifting capacity: influencing factors

Practical lifting force is determined by elements, by priority:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined using a steel plate with a smooth surface of suitable thickness (min. 20 mm), under vertically applied force, whereas under parallel forces the lifting capacity is smaller. Moreover, even a small distance {between} the magnet’s surface and the plate reduces the lifting capacity.

Handle with Care: Neodymium Magnets

Neodymium magnets can become demagnetized at high temperatures.

Despite the general resilience of magnets, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Neodymium magnets jump and clash mutually within a distance of several to around 10 cm from each other.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Neodymium magnets generate intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets are the most powerful magnets ever created, and their power can shock you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

 It is essential to maintain neodymium magnets away from youngest children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Magnets made of neodymium are especially fragile, which leads to their breakage.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Pay attention!

To show why neodymium magnets are so dangerous, see the article - How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98