SM 32x100 [2xM8] / N52 - magnetic separator
magnetic separator
Catalog no 130356
GTIN: 5906301813040
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
100 mm
Weight
554 g
381.30 ZŁ with VAT / pcs + price for transport
310.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to talk magnets?
Give us a call
+48 888 99 98 98
if you prefer send us a note via
contact form
the contact form page.
Strength and structure of magnets can be reviewed on our
modular calculator.
Orders placed before 14:00 will be shipped the same business day.
SM 32x100 [2xM8] / N52 - magnetic separator
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their long-term stability, neodymium magnets provide the following advantages:
- They retain their full power for nearly ten years – the loss is just ~1% (according to analyses),
- They show superior resistance to demagnetization from external field exposure,
- The use of a decorative silver surface provides a smooth finish,
- They possess significant magnetic force measurable at the magnet’s surface,
- With the right combination of compounds, they reach significant thermal stability, enabling operation at or above 230°C (depending on the structure),
- Thanks to the freedom in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in various configurations, which expands their application range,
- Key role in advanced technical fields – they are used in data storage devices, electromechanical systems, diagnostic apparatus or even technologically developed systems,
- Thanks to their efficiency per volume, small magnets offer high magnetic performance, in miniature format,
Disadvantages of rare earth magnets:
- They may fracture when subjected to a sudden impact. If the magnets are exposed to mechanical hits, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and additionally reinforces its overall durability,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to wet conditions can degrade. Therefore, for outdoor applications, we recommend waterproof types made of plastic,
- Limited ability to create threads in the magnet – the use of a magnetic holder is recommended,
- Possible threat from tiny pieces may arise, in case of ingestion, which is notable in the health of young users. Additionally, tiny components from these magnets can interfere with diagnostics once in the system,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Magnetic strength at its maximum – what it depends on?
The given pulling force of the magnet corresponds to the maximum force, measured in a perfect environment, that is:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a smooth surface
- with no separation
- under perpendicular detachment force
- in normal thermal conditions
Practical aspects of lifting capacity – factors
The lifting capacity of a magnet depends on in practice the following factors, according to their importance:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was carried out on a smooth plate of suitable thickness, under perpendicular forces, in contrast under parallel forces the load capacity is reduced by as much as fivefold. Moreover, even a small distance {between} the magnet’s surface and the plate decreases the lifting capacity.
We Recommend Caution with Neodymium Magnets
Keep neodymium magnets away from the wallet, computer, and TV.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets can become demagnetized at high temperatures.
In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
Magnets attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a major injury may occur. Depending on how massive the neodymium magnets are, they can lead to a cut or alternatively a fracture.
Do not give neodymium magnets to youngest children.
Remember that neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are known for their fragility, which can cause them to crumble.
Magnets made of neodymium are highly delicate, and by joining them in an uncontrolled manner, they will break. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Neodymium magnets are the strongest magnets ever invented. Their power can surprise you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Warning!
To show why neodymium magnets are so dangerous, read the article - How dangerous are powerful neodymium magnets?.
