tel: +48 22 499 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our proposal. All magnesy in our store are available for immediate delivery (see the list). See the magnet price list for more details see the magnet price list

Magnets for water searching F300 GOLD

Where to buy very strong neodymium magnet? Holders with magnets in airtight and durable steel casing are perfect for use in challenging weather, including snow and rain check...

magnetic holders

Magnetic holders can be used to enhance production processes, exploring underwater areas, or searching for meteors from gold check...

Enjoy shipping of your order if the order is placed before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x100 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130356

GTIN: 5906301813040

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

100 mm

Weight

554 g

381.30 with VAT / pcs + price for transport

310.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
310.00 ZŁ
381.30 ZŁ
price from 10 pcs
294.50 ZŁ
362.24 ZŁ
price from 15 pcs
279.00 ZŁ
343.17 ZŁ

Need help making a decision?

Call us +48 22 499 98 98 or contact us by means of request form our website.
Parameters along with appearance of a neodymium magnet can be tested with our force calculator.

Order by 14:00 and we’ll ship today!

SM 32x100 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x100 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130356
GTIN
5906301813040
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
100 mm [±0,1 mm]
Weight
554 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic rod is the basic building block of grate separators. Its task is to separate metal filings from the transported material. Thanks to the use of strong neodymium magnets, the rod catches even fine metal dust.
The rod consists of a casing tube made of acid-resistant steel (AISI 304/316). The core is a magnetic circuit generating high induction. Thanks to this, the rod is durable and hygienic.
Due to high power, direct removal of filings can be troublesome. We recommend taping the filings and peeling them off together. In industry, cover tubes (Easy Clean) are used, from which the magnet is slid out.
The Gauss value tells us how effectively the magnet will catch small impurities. For basic iron protection, standard power is enough. High Power versions (~12000-14000 Gs) are necessary to catch metal dust and stainless steel after processing.
We fulfill custom orders for bars matched to your machine. We offer various tip options: threaded holes (e.g., M8, M10), protruding screws, flat studs, or handles. Contact us for a quote on non-standard dimensions.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their consistent power, neodymium magnets have these key benefits:

  • They retain their magnetic properties for nearly 10 years – the loss is just ~1% (based on simulations),
  • They are extremely resistant to demagnetization caused by external field interference,
  • In other words, due to the metallic silver coating, the magnet obtains an professional appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
  • The ability for precise shaping as well as adjustment to specific needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which enhances their versatility in applications,
  • Wide application in new technology industries – they are utilized in computer drives, electric drives, medical equipment as well as high-tech tools,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, with minimal size,

Disadvantages of magnetic elements:

  • They can break when subjected to a powerful impact. If the magnets are exposed to external force, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage and additionally reinforces its overall durability,
  • High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to humidity can degrade. Therefore, for outdoor applications, it's best to use waterproof types made of non-metallic composites,
  • Limited ability to create precision features in the magnet – the use of a housing is recommended,
  • Safety concern linked to microscopic shards may arise, especially if swallowed, which is crucial in the protection of children. Furthermore, minuscule fragments from these magnets can disrupt scanning once in the system,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which can restrict large-scale applications

Maximum holding power of the magnet – what contributes to it?

The given pulling force of the magnet corresponds to the maximum force, calculated in a perfect environment, namely:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • in conditions of no clearance
  • in a perpendicular direction of force
  • in normal thermal conditions

Lifting capacity in practice – influencing factors

The lifting capacity of a magnet is determined by in practice key elements, from primary to secondary:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured with the use of a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, in contrast under parallel forces the holding force is lower. Moreover, even a minimal clearance {between} the magnet’s surface and the plate reduces the load capacity.

Precautions

Keep neodymium magnets as far away as possible from GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets will attract each other within a distance of several to about 10 cm from each other. Remember not to put fingers between magnets or alternatively in their path when attract. Magnets, depending on their size, can even cut off a finger or alternatively there can be a significant pressure or a fracture.

  Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.

Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets are the most powerful magnets ever created, and their power can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnetic are especially delicate, which leads to shattering.

Magnets made of neodymium are delicate and will break if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Be careful!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98