tel: +48 22 499 98 98

neodymium magnets

We provide blue color magnets Nd2Fe14B - our proposal. Practically all "magnets" in our store are in stock for immediate delivery (see the list). Check out the magnet price list for more details check the magnet price list

Magnet for searching F200 GOLD

Where to purchase powerful neodymium magnet? Magnetic holders in airtight, solid enclosure are ideally suited for use in challenging weather conditions, including in the rain and snow read...

magnetic holders

Magnetic holders can be used to enhance manufacturing, underwater exploration, or locating meteorites made of ore see...

Enjoy shipping of your order on the day of purchase by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x100 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130356

GTIN: 5906301813040

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

100 mm

Weight

554 g

381.30 with VAT / pcs + price for transport

310.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
310.00 ZŁ
381.30 ZŁ
price from 10 pcs
294.50 ZŁ
362.24 ZŁ
price from 15 pcs
279.00 ZŁ
343.17 ZŁ

Want to talk magnets?

Give us a call +48 888 99 98 98 if you prefer send us a note via contact form the contact form page.
Strength and structure of magnets can be reviewed on our modular calculator.

Orders placed before 14:00 will be shipped the same business day.

SM 32x100 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x100 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130356
GTIN
5906301813040
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
100 mm [±0,1 mm]
Weight
554 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the force of neodymium magnets, placed in a casing made of stainless steel mostly AISI304. Due to this, it is possible to effectively segregate ferromagnetic elements from the mixture. A key aspect of its operation is the repulsion of N and S poles of neodymium magnets, which causes magnetic substances to be collected. The thickness of the magnet and its structure pitch determine the power and range of the separator's operation.
Generally speaking, magnetic separators are designed to separate ferromagnetic elements. If the cans are made of ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers are employed in food production to clear metallic contaminants, including iron fragments or iron dust. Our rods are constructed from durable acid-resistant steel, EN 1.4301, intended for contact with food.
Magnetic rollers, otherwise cylindrical magnets, are employed in food production, metal separation as well as waste processing. They help in extracting iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers are built with neodymium magnets anchored in a stainless steel tube cylinder made of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar can be with M8 threaded holes - 18 mm, which enables quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars differ in terms of magnetic force lines, flux density and the field of the magnetic field. We produce them in two materials, N42 as well as N52.
Usually it is believed that the stronger the magnet, the more effective. Nevertheless, the value of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is more flat, the magnetic force lines will be short. By contrast, when the magnet is thick, the force lines will be extended and reach further.
For making the casings of magnetic separators - rollers, most often stainless steel is used, particularly types AISI 304, AISI 316, and AISI 316L.
In a salt water environment, AISI 316 steel is recommended thanks to its outstanding anti-corrosion properties.
Magnetic rollers are characterized by their unique configuration of poles and their ability to attract magnetic particles directly onto their surface, as opposed to other devices that often use complex filtration systems.
Technical designations and terms related to magnetic separators include amongst others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The result is verified in a value table - the lowest is N30. All designations below N27 or N25 suggest recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including excellent separation efficiency, strong magnetic field, and durability. However, some of the downsides may involve higher cost compared to other types of magnets and the need for regular maintenance.
By ensuring proper maintenance of neodymium magnetic rollers, it’s worth they should be regularly cleaned, avoiding temperatures above 80 degrees. The rollers our rollers have waterproofing IP67, so if they are leaky, the magnets inside can oxidize and weaken. Testing of the rollers is recommended be carried out every two years. Caution should be taken during use, as there is a risk getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, which are used to remove metal contaminants from bulk and granular materials. They are used in the food industry, recycling, and plastic processing, where metal separation is crucial.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their long-term stability, neodymium magnets provide the following advantages:

  • They retain their full power for nearly ten years – the loss is just ~1% (according to analyses),
  • They show superior resistance to demagnetization from external field exposure,
  • The use of a decorative silver surface provides a smooth finish,
  • They possess significant magnetic force measurable at the magnet’s surface,
  • With the right combination of compounds, they reach significant thermal stability, enabling operation at or above 230°C (depending on the structure),
  • Thanks to the freedom in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in various configurations, which expands their application range,
  • Key role in advanced technical fields – they are used in data storage devices, electromechanical systems, diagnostic apparatus or even technologically developed systems,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, in miniature format,

Disadvantages of rare earth magnets:

  • They may fracture when subjected to a sudden impact. If the magnets are exposed to mechanical hits, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and additionally reinforces its overall durability,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to wet conditions can degrade. Therefore, for outdoor applications, we recommend waterproof types made of plastic,
  • Limited ability to create threads in the magnet – the use of a magnetic holder is recommended,
  • Possible threat from tiny pieces may arise, in case of ingestion, which is notable in the health of young users. Additionally, tiny components from these magnets can interfere with diagnostics once in the system,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Magnetic strength at its maximum – what it depends on?

The given pulling force of the magnet corresponds to the maximum force, measured in a perfect environment, that is:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a smooth surface
  • with no separation
  • under perpendicular detachment force
  • in normal thermal conditions

Practical aspects of lifting capacity – factors

The lifting capacity of a magnet depends on in practice the following factors, according to their importance:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on a smooth plate of suitable thickness, under perpendicular forces, in contrast under parallel forces the load capacity is reduced by as much as fivefold. Moreover, even a small distance {between} the magnet’s surface and the plate decreases the lifting capacity.

We Recommend Caution with Neodymium Magnets

Keep neodymium magnets away from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets can become demagnetized at high temperatures.

In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a major injury may occur. Depending on how massive the neodymium magnets are, they can lead to a cut or alternatively a fracture.

  Do not give neodymium magnets to youngest children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are known for their fragility, which can cause them to crumble.

Magnets made of neodymium are highly delicate, and by joining them in an uncontrolled manner, they will break. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets are the strongest magnets ever invented. Their power can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Warning!

To show why neodymium magnets are so dangerous, read the article - How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98