SM 32x100 [2xM8] / N52 - magnetic separator
magnetic separator
Catalog no 130356
GTIN: 5906301813040
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
100 mm
Weight
554 g
381.30 ZŁ with VAT / pcs + price for transport
310.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Give us a call
+48 22 499 98 98
otherwise let us know by means of
contact form
our website.
Parameters and appearance of a neodymium magnet can be estimated on our
magnetic calculator.
Same-day processing for orders placed before 14:00.
SM 32x100 [2xM8] / N52 - magnetic separator
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their remarkable magnetic power, neodymium magnets offer the following advantages:
- Their power is durable, and after around ten years, it drops only by ~1% (theoretically),
- They protect against demagnetization induced by surrounding magnetic fields very well,
- The use of a mirror-like silver surface provides a eye-catching finish,
- They exhibit elevated levels of magnetic induction near the outer area of the magnet,
- Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
- With the option for fine forming and targeted design, these magnets can be produced in various shapes and sizes, greatly improving application potential,
- Significant impact in modern technologies – they are used in hard drives, rotating machines, clinical machines along with other advanced devices,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of rare earth magnets:
- They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to shocks, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks and additionally strengthens its overall strength,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a moist environment – during outdoor use, we recommend using waterproof magnets, such as those made of rubber,
- The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is risky,
- Health risk related to magnet particles may arise, in case of ingestion, which is significant in the family environments. Furthermore, minuscule fragments from these products may hinder health screening after being swallowed,
- In cases of large-volume purchasing, neodymium magnet cost may not be economically viable,
Magnetic strength at its maximum – what it depends on?
The given holding capacity of the magnet means the highest holding force, measured in the best circumstances, specifically:
- with the use of low-carbon steel plate acting as a magnetic yoke
- having a thickness of no less than 10 millimeters
- with a smooth surface
- with no separation
- under perpendicular detachment force
- at room temperature
Impact of factors on magnetic holding capacity in practice
The lifting capacity of a magnet is determined by in practice key elements, ordered from most important to least significant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed by applying a smooth steel plate of optimal thickness (min. 20 mm), under vertically applied force, however under shearing force the holding force is lower. Additionally, even a slight gap {between} the magnet and the plate decreases the holding force.
Be Cautious with Neodymium Magnets
Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Neodymium magnets are delicate and can easily crack as well as shatter.
Neodymium magnetic are highly delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
In the situation of holding a finger in the path of a neodymium magnet, in such a case, a cut or a fracture may occur.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Neodymium magnets produce strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can surprise you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
Exercise caution!
To raise awareness of why neodymium magnets are so dangerous, see the article titled How dangerous are very strong neodymium magnets?.
