e-mail: bok@dhit.pl

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our offer. All "magnets" on our website are in stock for immediate purchase (see the list). See the magnet pricing for more details see the magnet price list

Magnet for treasure hunters F300 GOLD

Where to buy very strong magnet? Holders with magnets in solid and airtight steel enclosure are ideally suited for use in challenging weather conditions, including during rain and snow more information...

magnetic holders

Magnetic holders can be applied to enhance manufacturing, exploring underwater areas, or searching for meteors from gold check...

Order is always shipped on the day of purchase by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 18x125 [2xM5] / N42 - magnetic separator

magnetic separator

Catalog no 130270

GTIN: 5906301812722

5

Diameter Ø [±0,1 mm]

18 mm

Height [±0,1 mm]

125 mm

Weight

0.01 g

276.75 with VAT / pcs + price for transport

225.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
225.00 ZŁ
276.75 ZŁ
price from 12 pcs
213.75 ZŁ
262.91 ZŁ
price from 20 pcs
202.50 ZŁ
249.07 ZŁ

Need advice?

Contact us by phone +48 22 499 98 98 alternatively let us know via contact form the contact page.
Specifications and appearance of a neodymium magnet can be estimated using our modular calculator.

Order by 14:00 and we’ll ship today!

SM 18x125 [2xM5] / N42 - magnetic separator

Specification/characteristics SM 18x125 [2xM5] / N42 - magnetic separator
properties
values
Cat. no.
130270
GTIN
5906301812722
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
18 mm [±0,1 mm]
Height
125 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device roller magnetic is based on the use of neodymium magnets, which are welded in a construction made of stainless steel mostly AISI304. Due to this, it is possible to effectively separate ferromagnetic particles from different substances. A fundamental component of its operation is the repulsion of N and S poles of neodymium magnets, which allows magnetic substances to be collected. The thickness of the magnet and its structure pitch affect the power and range of the separator's operation.
Generally speaking, magnetic separators are designed to separate ferromagnetic elements. If the cans are made from ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers are employed in the food industry to clear metallic contaminants, including iron fragments or iron dust. Our rollers are made from durable acid-resistant steel, AISI 304, intended for contact with food.
Magnetic rollers, otherwise cylindrical magnets, are employed in metal separation, food production as well as waste processing. They help in eliminating iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers consist of neodymium magnets placed in a tube made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded holes - 18 mm, enabling quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars stand out in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in materials, N42 as well as N52.
Often it is believed that the greater the magnet's power, the more effective. But, the effectiveness of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is more flat, the magnetic force lines are short. On the other hand, when the magnet is thick, the force lines are longer and extend over a greater distance.
For constructing the casings of magnetic separators - rollers, usually stainless steel is employed, especially types AISI 316, AISI 316L, and AISI 304.
In a salt water environment, AISI 316 steel is recommended thanks to its excellent corrosion resistance.
Magnetic rollers stand out for their unique configuration of poles and their ability to attract magnetic substances directly onto their surface, in contrast to other devices that may utilize complex filtration systems.
Technical designations and terms related to magnetic separators comprise among others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value near the magnetic pole. The result is verified in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic rollers offer many advantages, including higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. On the other hand, among the drawbacks, one can mention the requirement for frequent cleaning, greater weight, and potential installation difficulties.
For proper maintenance of neodymium magnetic rollers, it’s worth washing regularly, avoiding temperatures above 80 degrees. The rollers our rollers have waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and weaken. Testing of the rollers is recommended be carried out every two years. Care should be taken, as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, which are used to remove metal contaminants from bulk and granular materials. They are applied in industries such as food processing, ceramics, and recycling, where metal separation is crucial.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their stability, neodymium magnets are valued for these benefits:

  • They do not lose their strength nearly ten years – the reduction of power is only ~1% (according to tests),
  • They remain magnetized despite exposure to magnetic surroundings,
  • By applying a shiny layer of nickel, the element gains a clean look,
  • They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
  • The ability for accurate shaping and adaptation to custom needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which amplifies their functionality across industries,
  • Significant impact in modern technologies – they find application in hard drives, electric drives, healthcare devices along with technologically developed systems,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to physical collisions, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time reinforces its overall durability,
  • They lose power at extreme temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a damp environment. If exposed to rain, we recommend using encapsulated magnets, such as those made of plastic,
  • Limited ability to create internal holes in the magnet – the use of a external casing is recommended,
  • Potential hazard linked to microscopic shards may arise, in case of ingestion, which is important in the context of child safety. Moreover, tiny components from these magnets may hinder health screening after being swallowed,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which may limit large-scale applications

Precautions

Neodymium magnets are the most powerful magnets ever created, and their power can surprise you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent damage to the magnets.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

In the case of placing a finger in the path of a neodymium magnet, in such a case, a cut or a fracture may occur.

Neodymium magnets are fragile as well as can easily crack as well as get damaged.

Neodymium magnets are fragile and will break if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets can demagnetize at high temperatures.

Even though magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

 Maintain neodymium magnets away from children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Safety rules!

In order for you to know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous very strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98