tel: +48 888 99 98 98

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our offer. All magnesy on our website are available for immediate delivery (check the list). Check out the magnet price list for more details see the magnet price list

Magnets for treasure hunters F300 GOLD

Where to buy strong neodymium magnet? Holders with magnets in airtight and durable steel casing are perfect for use in challenging climate conditions, including snow and rain more information...

magnetic holders

Holders with magnets can be used to improve production, exploring underwater areas, or locating meteors from gold read...

Enjoy shipping of your order on the day of purchase by 2:00 PM on business days.

Dhit sp. z o.o.
Product available Ships in 2 days

SM 32x225 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130361

GTIN: 5906301813095

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

225 mm

Weight

1205 g

676.50 with VAT / pcs + price for transport

550.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
550.00 ZŁ
676.50 ZŁ
price from 5 pcs
522.50 ZŁ
642.68 ZŁ
price from 10 pcs
495.00 ZŁ
608.85 ZŁ

Need advice?

Give us a call +48 888 99 98 98 alternatively contact us by means of form our website.
Specifications along with structure of a neodymium magnet can be checked using our power calculator.

Same-day shipping for orders placed before 14:00.

SM 32x225 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x225 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130361
GTIN
5906301813095
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
225 mm [±0,1 mm]
Weight
1205 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

This product serves to catch ferromagnetic impurities from raw materials. Its task is to separate metal filings from the transported material. Thanks to the use of strong neodymium magnets, the rod catches even fine metal dust.
The outer layer is polished acid-resistant steel, approved for food contact. Inside, there is a stack of strong neodymium magnets in a special configuration. Thanks to this, the rod is durable and hygienic.
Due to high power, direct removal of filings can be troublesome. You can use compressed air or special non-magnetic strippers. For easier maintenance, consider a system with a cleaning sleeve.
The Gauss value tells us how effectively the magnet will catch small impurities. Standard rods (~8000 Gs) are sufficient for bolts, nails, and chips. High induction is required when contaminants are microscopic.
We fulfill custom orders for bars matched to your machine. The rod end is adapted to the mounting system in your separator. Contact us for a quote on non-standard dimensions.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic capacity, neodymium magnets provide the following advantages:

  • They retain their attractive force for around ten years – the loss is just ~1% (according to analyses),
  • They remain magnetized despite exposure to magnetic surroundings,
  • By applying a reflective layer of gold, the element gains a modern look,
  • They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
  • Thanks to their enhanced temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
  • The ability for custom shaping as well as customization to specific needs – neodymium magnets can be manufactured in many forms and dimensions, which enhances their versatility in applications,
  • Wide application in cutting-edge sectors – they serve a purpose in data storage devices, rotating machines, diagnostic apparatus along with technologically developed systems,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They can break when subjected to a sudden impact. If the magnets are exposed to physical collisions, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from breakage and additionally enhances its overall resistance,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a damp environment, especially when used outside, we recommend using sealed magnets, such as those made of non-metallic materials,
  • Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing holes directly in the magnet,
  • Possible threat from tiny pieces may arise, if ingested accidentally, which is crucial in the context of child safety. It should also be noted that small elements from these devices have the potential to hinder health screening if inside the body,
  • Due to expensive raw materials, their cost is relatively high,

Magnetic strength at its maximum – what it depends on?

The given holding capacity of the magnet corresponds to the highest holding force, measured in the best circumstances, namely:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • in conditions of no clearance
  • in a perpendicular direction of force
  • under standard ambient temperature

Key elements affecting lifting force

The lifting capacity of a magnet depends on in practice key elements, according to their importance:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on a smooth plate of suitable thickness, under a perpendicular pulling force, whereas under parallel forces the lifting capacity is smaller. Additionally, even a small distance {between} the magnet and the plate lowers the load capacity.

Be Cautious with Neodymium Magnets

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Magnets attract each other within a distance of several to around 10 cm from each other. Remember not to place fingers between magnets or in their path when attract. Depending on how large the neodymium magnets are, they can lead to a cut or a fracture.

  Neodymium magnets should not be around youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets are the strongest magnets ever created, and their power can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can become demagnetized at high temperatures.

Despite the fact that magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets are characterized by their fragility, which can cause them to crumble.

Neodymium magnets are extremely delicate, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Exercise caution!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are strong neodymium magnets?.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98