tel: +48 22 499 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our store's offer. All "magnets" on our website are available for immediate delivery (check the list). See the magnet price list for more details check the magnet price list

Magnet for treasure hunters F300 GOLD

Where to purchase strong magnet? Magnetic holders in airtight, solid steel casing are excellent for use in variable and difficult climate conditions, including during rain and snow more information...

magnetic holders

Magnetic holders can be used to enhance manufacturing, underwater exploration, or searching for meteorites made of metal see more...

We promise to ship your order if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x225 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130361

GTIN: 5906301813095

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

225 mm

Weight

1205 g

676.50 with VAT / pcs + price for transport

550.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
550.00 ZŁ
676.50 ZŁ
price from 5 pcs
522.50 ZŁ
642.68 ZŁ
price from 10 pcs
495.00 ZŁ
608.85 ZŁ

Hunting for a discount?

Pick up the phone and ask +48 888 99 98 98 otherwise contact us through inquiry form through our site.
Specifications and form of a neodymium magnet can be checked with our force calculator.

Order by 14:00 and we’ll ship today!

SM 32x225 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x225 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130361
GTIN
5906301813095
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
225 mm [±0,1 mm]
Weight
1205 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The main mechanism of the magnetic separator is the use of neodymium magnets, placed in a construction made of stainless steel usually AISI304. As a result, it is possible to precisely remove ferromagnetic particles from other materials. A fundamental component of its operation is the use of repulsion of magnetic poles N and S, which allows magnetic substances to be collected. The thickness of the embedded magnet and its structure pitch affect the range and strength of the separator's operation.
Generally speaking, magnetic separators serve to extract ferromagnetic particles. If the cans are made of ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers are employed in the food industry to remove metallic contaminants, such as iron fragments or iron dust. Our rollers are made from durable acid-resistant steel, AISI 304, intended for contact with food.
Magnetic rollers, often called cylindrical magnets, are employed in food production, metal separation as well as recycling. They help in extracting iron dust during the process of separating metals from other materials.
Our magnetic rollers are composed of a neodymium magnet anchored in a stainless steel tube casing made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar will be with M8 threaded holes - 18 mm, which enables easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars differ in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in materials, N42 and N52.
Usually it is believed that the stronger the magnet, the more effective. However, the strength of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and specific needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is more flat, the magnetic force lines will be more compressed. Otherwise, in the case of a thicker magnet, the force lines are longer and extend over a greater distance.
For creating the casings of magnetic separators - rollers, usually stainless steel is utilized, especially types AISI 304, AISI 316, and AISI 316L.
In a salt water contact, type AISI 316 steel is recommended due to its excellent corrosion resistance.
Magnetic rollers stand out for their unique configuration of poles and their ability to attract magnetic substances directly onto their surface, as opposed to other separators that often use complex filtration systems.
Technical designations and terms related to magnetic separators comprise among others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value near the magnetic pole. The result is verified in a value table - the lowest is N30. All designations less than N27 or N25 suggest recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including excellent separation efficiency, strong magnetic field, and durability. However, some of the downsides may involve the need for regular cleaning, higher cost, and potential installation challenges.
To properly maintain of neodymium magnetic rollers, you should they should be regularly cleaned, avoiding temperatures above 80 degrees. The rollers our rollers have waterproofing IP67, so if they are leaky, the magnets inside can oxidize and lose their power. Magnetic field measurements is recommended be carried out once every 24 months. Care should be taken, as there is a risk getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, used for separating ferromagnetic contaminants from raw materials. They are used in the food industry, recycling, and plastic processing, where the removal of iron metals and iron filings is essential.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their remarkable strength, neodymium magnets offer the following advantages:

  • They retain their attractive force for around 10 years – the loss is just ~1% (in theory),
  • Their ability to resist magnetic interference from external fields is notable,
  • By applying a reflective layer of silver, the element gains a sleek look,
  • The outer field strength of the magnet shows remarkable magnetic properties,
  • These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to build),
  • Thanks to the possibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in various configurations, which expands their usage potential,
  • Important function in modern technologies – they are utilized in hard drives, electric drives, medical equipment as well as technologically developed systems,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to external force, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time reinforces its overall resistance,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of plastic for outdoor use,
  • Limited ability to create precision features in the magnet – the use of a magnetic holder is recommended,
  • Potential hazard due to small fragments may arise, in case of ingestion, which is notable in the protection of children. Additionally, tiny components from these assemblies have the potential to disrupt scanning once in the system,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Detachment force of the magnet in optimal conditionswhat contributes to it?

The given holding capacity of the magnet represents the highest holding force, assessed in ideal conditions, namely:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a refined outer layer
  • with zero air gap
  • under perpendicular detachment force
  • under standard ambient temperature

Determinants of practical lifting force of a magnet

Practical lifting force is determined by elements, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on plates with a smooth surface of suitable thickness, under a perpendicular pulling force, whereas under attempts to slide the magnet the holding force is lower. Additionally, even a slight gap {between} the magnet and the plate decreases the holding force.

Handle Neodymium Magnets Carefully

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

In the case of holding a finger in the path of a neodymium magnet, in that situation, a cut or a fracture may occur.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can shock you at first.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

Neodymium magnetic are fragile and can easily crack and shatter.

Magnets made of neodymium are extremely fragile, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Neodymium magnets should not be near people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Caution!

In order to show why neodymium magnets are so dangerous, see the article - How very dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98