e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our proposal. Practically all magnesy neodymowe on our website are in stock for immediate delivery (see the list). See the magnet pricing for more details see the magnet price list

Magnets for water searching F300 GOLD

Where to buy powerful magnet? Magnet holders in solid and airtight steel enclosure are perfect for use in challenging climate conditions, including in the rain and snow read...

magnets with holders

Holders with magnets can be applied to facilitate production processes, underwater discoveries, or locating meteorites from gold see...

We promise to ship ordered magnets on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x225 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130361

GTIN: 5906301813095

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

225 mm

Weight

1205 g

676.50 with VAT / pcs + price for transport

550.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
550.00 ZŁ
676.50 ZŁ
price from 5 pcs
522.50 ZŁ
642.68 ZŁ
price from 10 pcs
495.00 ZŁ
608.85 ZŁ

Can't decide what to choose?

Call us +48 888 99 98 98 otherwise get in touch through contact form the contact page.
Lifting power along with structure of magnets can be analyzed with our magnetic mass calculator.

Order by 14:00 and we’ll ship today!

SM 32x225 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x225 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130361
GTIN
5906301813095
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
225 mm [±0,1 mm]
Weight
1205 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the force of neodymium magnets, which are welded in a casing made of stainless steel usually AISI304. As a result, it is possible to efficiently separate ferromagnetic elements from the mixture. A key aspect of its operation is the use of repulsion of N and S poles of neodymium magnets, which causes magnetic substances to be collected. The thickness of the embedded magnet and its structure's pitch determine the power and range of the separator's operation.
Generally speaking, magnetic separators are used to extract ferromagnetic particles. If the cans are ferromagnetic, the separator will effectively segregate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers find application in the food industry to clear metallic contaminants, such as iron fragments or iron dust. Our rollers are built from durable acid-resistant steel, AISI 304, suitable for contact with food.
Magnetic rollers, otherwise cylindrical magnets, are employed in food production, metal separation as well as recycling. They help in eliminating iron dust in the course of the process of separating metals from other wastes.
Our magnetic rollers consist of neodymium magnets anchored in a stainless steel tube casing of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar will be with M8 threaded openings, enabling simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars stand out in terms of magnetic force lines, flux density and the field of the magnetic field. We produce them in two materials, N42 and N52.
Usually it is believed that the stronger the magnet, the more efficient it is. However, the effectiveness of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is more flat, the magnetic force lines will be more compressed. On the other hand, when the magnet is thick, the force lines are longer and reach further.
For constructing the casings of magnetic separators - rollers, usually stainless steel is used, especially types AISI 316, AISI 316L, and AISI 304.
In a salt water environment, type AISI 316 steel is highly recommended thanks to its excellent corrosion resistance.
Magnetic bars are characterized by their unique configuration of poles and their ability to attract magnetic substances directly onto their surface, in contrast to other devices that often use more complicated filtration systems.
Technical designations and terms related to magnetic separators include amongst others magnet pitch, polarity, and magnetic induction, as well as the steel type applied.
Magnetic induction for a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations less than N27 or N25 suggest recycling that falls below the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as excellent separation efficiency, strong magnetic field, and durability. Disadvantages may include the requirement for frequent cleaning, greater weight, and potential installation difficulties.
By ensuring proper maintenance of neodymium magnetic rollers, it is recommended they should be regularly cleaned, avoiding temperatures above 80 degrees. The rollers feature waterproofing IP67, so if they are leaky, the magnets inside can rust and lose their power. Testing of the rollers is recommended be carried out every two years. Care should be taken, as there is a risk getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The effective range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, which are used to remove metal contaminants from bulk and granular materials. They are used in the food industry, recycling, and plastic processing, where metal separation is crucial.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their pulling strength, neodymium magnets provide the following advantages:

  • They retain their attractive force for almost ten years – the loss is just ~1% (based on simulations),
  • Their ability to resist magnetic interference from external fields is among the best,
  • By applying a bright layer of gold, the element gains a sleek look,
  • They exhibit elevated levels of magnetic induction near the outer area of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • The ability for accurate shaping and adaptation to individual needs – neodymium magnets can be manufactured in many forms and dimensions, which amplifies their functionality across industries,
  • Significant impact in modern technologies – they are used in data storage devices, electric motors, diagnostic apparatus along with other advanced devices,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to shocks, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time increases its overall robustness,
  • They lose magnetic force at elevated temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of rubber for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing threads directly in the magnet,
  • Safety concern due to small fragments may arise, when consumed by mistake, which is notable in the health of young users. Furthermore, miniature parts from these products have the potential to complicate medical imaging after being swallowed,
  • Due to a complex production process, their cost is above average,

Maximum lifting capacity of the magnetwhat contributes to it?

The given lifting capacity of the magnet means the maximum lifting force, measured under optimal conditions, specifically:

  • with mild steel, used as a magnetic flux conductor
  • having a thickness of no less than 10 millimeters
  • with a refined outer layer
  • with zero air gap
  • in a perpendicular direction of force
  • at room temperature

Lifting capacity in real conditions – factors

Practical lifting force is determined by elements, by priority:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, in contrast under parallel forces the load capacity is reduced by as much as 5 times. In addition, even a slight gap {between} the magnet and the plate lowers the holding force.

Safety Precautions

Neodymium magnets can become demagnetized at high temperatures.

In certain circumstances, Neodymium magnets may experience demagnetization when subjected to high temperatures.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can shock you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

If joining of neodymium magnets is not controlled, then they may crumble and crack. Remember not to move them to each other or hold them firmly in hands at a distance less than 10 cm.

Neodymium magnetic are delicate and can easily break as well as shatter.

Neodymium magnets are extremely fragile, and by joining them in an uncontrolled manner, they will crack. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Neodymium magnets produce intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

  Do not give neodymium magnets to youngest children.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Safety rules!

So that know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98