tel: +48 888 99 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our proposal. All magnesy neodymowe in our store are in stock for immediate purchase (see the list). See the magnet pricing for more details check the magnet price list

Magnet for water searching F300 GOLD

Where to purchase very strong neodymium magnet? Magnetic holders in airtight and durable enclosure are excellent for use in difficult weather conditions, including during snow and rain check...

magnetic holders

Holders with magnets can be applied to enhance manufacturing, underwater discoveries, or searching for meteors made of ore read...

Enjoy shipping of your order on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x225 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130361

GTIN: 5906301813095

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

225 mm

Weight

1205 g

676.50 with VAT / pcs + price for transport

550.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
550.00 ZŁ
676.50 ZŁ
price from 5 pcs
522.50 ZŁ
642.68 ZŁ
price from 10 pcs
495.00 ZŁ
608.85 ZŁ

Need help making a decision?

Call us now +48 22 499 98 98 or drop us a message using our online form the contact section.
Weight and shape of neodymium magnets can be analyzed with our online calculation tool.

Same-day shipping for orders placed before 14:00.

SM 32x225 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x225 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130361
GTIN
5906301813095
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
225 mm [±0,1 mm]
Weight
1205 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device rod magnetic is based on the use of neodymium magnets, which are embedded in a construction made of stainless steel usually AISI304. As a result, it is possible to efficiently segregate ferromagnetic elements from different substances. A fundamental component of its operation is the repulsion of N and S poles of neodymium magnets, which causes magnetic substances to be attracted. The thickness of the embedded magnet and its structure's pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators are used to separate ferromagnetic particles. If the cans are made of ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers are used in food production to remove metallic contaminants, for example iron fragments or iron dust. Our rods are built from durable acid-resistant steel, EN 1.4301, suitable for contact with food.
Magnetic rollers, otherwise magnetic separators, are used in metal separation, food production as well as recycling. They help in extracting iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers consist of neodymium magnets embedded in a stainless steel tube casing of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar will be with M8 threaded openings, which enables easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars stand out in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in two materials, N42 and N52.
Usually it is believed that the greater the magnet's power, the better. However, the effectiveness of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is more flat, the magnetic force lines will be more compressed. Otherwise, in the case of a thicker magnet, the force lines will be extended and extend over a greater distance.
For making the casings of magnetic separators - rollers, usually stainless steel is used, especially types AISI 304, AISI 316, and AISI 316L.
In a saltwater contact, AISI 316 steel is recommended thanks to its excellent corrosion resistance.
Magnetic rollers are characterized by their unique configuration of poles and their capability to attract magnetic particles directly onto their surface, as opposed to other separators that often use more complicated filtration systems.
Technical designations and terms related to magnetic separators comprise amongst others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations less than N27 or N25 suggest recycling that falls below the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as excellent separation efficiency, strong magnetic field, and durability. Disadvantages may include the requirement for frequent cleaning, greater weight, and potential installation difficulties.
To properly maintain of neodymium magnetic rollers, you should cleaning after each use, avoiding temperatures up to 80°C. The rollers our rollers have waterproofing IP67, so if they are leaky, the magnets inside can rust and weaken. Testing of the rollers is recommended be carried out once every 24 months. Caution should be taken during use, as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, which are used to remove metal contaminants from bulk and granular materials. They are applied in industries such as food processing, ceramics, and recycling, where metal separation is crucial.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their long-term stability, neodymium magnets provide the following advantages:

  • Their strength remains stable, and after approximately ten years, it drops only by ~1% (according to research),
  • They remain magnetized despite exposure to magnetic noise,
  • Because of the lustrous layer of gold, the component looks high-end,
  • They exhibit elevated levels of magnetic induction near the outer area of the magnet,
  • With the right combination of compounds, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the design),
  • With the option for customized forming and precise design, these magnets can be produced in numerous shapes and sizes, greatly improving engineering flexibility,
  • Important function in cutting-edge sectors – they are used in data storage devices, electric drives, clinical machines as well as other advanced devices,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They may fracture when subjected to a sudden impact. If the magnets are exposed to mechanical hits, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks while also strengthens its overall strength,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a damp environment, especially when used outside, we recommend using waterproof magnets, such as those made of polymer,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is difficult,
  • Health risk related to magnet particles may arise, when consumed by mistake, which is crucial in the protection of children. It should also be noted that tiny components from these assemblies have the potential to interfere with diagnostics after being swallowed,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which may limit large-scale applications

Optimal lifting capacity of a neodymium magnetwhat affects it?

The given lifting capacity of the magnet corresponds to the maximum lifting force, assessed in a perfect environment, namely:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a polished side
  • with zero air gap
  • under perpendicular detachment force
  • under standard ambient temperature

Determinants of practical lifting force of a magnet

The lifting capacity of a magnet is determined by in practice the following factors, ordered from most important to least significant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured using a steel plate with a smooth surface of optimal thickness (min. 20 mm), under perpendicular pulling force, however under attempts to slide the magnet the load capacity is reduced by as much as 75%. In addition, even a slight gap {between} the magnet’s surface and the plate decreases the lifting capacity.

Be Cautious with Neodymium Magnets

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are noted for their fragility, which can cause them to become damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets are the most powerful magnets ever created, and their power can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

  Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

If you have a finger between or alternatively on the path of attracting magnets, there may be a severe cut or even a fracture.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Caution!

In order to show why neodymium magnets are so dangerous, read the article - How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98