SM 32x225 [2xM8] / N52 - magnetic separator
magnetic separator
Catalog no 130361
GTIN: 5906301813095
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
225 mm
Weight
1205 g
676.50 ZŁ with VAT / pcs + price for transport
550.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Do you have purchase concerns?
Call us
+48 22 499 98 98
alternatively let us know using
request form
the contact form page.
Force along with form of magnetic components can be estimated with our
power calculator.
Orders submitted before 14:00 will be dispatched today!
SM 32x225 [2xM8] / N52 - magnetic separator
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their long-term stability, neodymium magnets provide the following advantages:
- They do not lose their power around 10 years – the reduction of strength is only ~1% (based on measurements),
- They show exceptional resistance to demagnetization from outside magnetic sources,
- In other words, due to the metallic silver coating, the magnet obtains an aesthetic appearance,
- The outer field strength of the magnet shows remarkable magnetic properties,
- With the right combination of compounds, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the structure),
- Thanks to the freedom in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in diverse shapes and sizes, which broadens their functional possibilities,
- Wide application in advanced technical fields – they serve a purpose in hard drives, rotating machines, clinical machines or even high-tech tools,
- Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications
Disadvantages of neodymium magnets:
- They can break when subjected to a sudden impact. If the magnets are exposed to external force, it is advisable to use in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks and enhances its overall robustness,
- They lose strength at increased temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a damp environment. For outdoor use, we recommend using encapsulated magnets, such as those made of polymer,
- The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is not feasible,
- Health risk linked to microscopic shards may arise, when consumed by mistake, which is important in the context of child safety. It should also be noted that miniature parts from these assemblies have the potential to disrupt scanning when ingested,
- Due to a complex production process, their cost is above average,
Magnetic strength at its maximum – what it depends on?
The given strength of the magnet means the optimal strength, measured in ideal conditions, namely:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a polished side
- with no separation
- with vertical force applied
- under standard ambient temperature
Lifting capacity in real conditions – factors
Practical lifting force is dependent on factors, listed from the most critical to the less significant:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, whereas under shearing force the load capacity is reduced by as much as 5 times. Additionally, even a slight gap {between} the magnet’s surface and the plate reduces the holding force.
Precautions
Neodymium magnets are the strongest magnets ever created, and their power can surprise you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
Neodymium magnets are particularly fragile, which leads to their breakage.
Neodymium magnets are fragile as well as will break if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Neodymium magnets can demagnetize at high temperatures.
Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.
You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.
Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
If you have a finger between or on the path of attracting magnets, there may be a severe cut or a fracture.
Do not give neodymium magnets to children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Neodymium magnets generate strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Be careful!
Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
