SM 32x225 [2xM8] / N52 - magnetic separator
magnetic separator
Catalog no 130361
GTIN: 5906301813095
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
225 mm
Weight
1205 g
676.50 ZŁ with VAT / pcs + price for transport
550.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Call us now
+48 22 499 98 98
or drop us a message using
our online form
the contact section.
Weight and shape of neodymium magnets can be analyzed with our
online calculation tool.
Same-day shipping for orders placed before 14:00.
SM 32x225 [2xM8] / N52 - magnetic separator
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their long-term stability, neodymium magnets provide the following advantages:
- Their strength remains stable, and after approximately ten years, it drops only by ~1% (according to research),
- They remain magnetized despite exposure to magnetic noise,
- Because of the lustrous layer of gold, the component looks high-end,
- They exhibit elevated levels of magnetic induction near the outer area of the magnet,
- With the right combination of compounds, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the design),
- With the option for customized forming and precise design, these magnets can be produced in numerous shapes and sizes, greatly improving engineering flexibility,
- Important function in cutting-edge sectors – they are used in data storage devices, electric drives, clinical machines as well as other advanced devices,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of neodymium magnets:
- They may fracture when subjected to a sudden impact. If the magnets are exposed to mechanical hits, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks while also strengthens its overall strength,
- Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- They rust in a damp environment, especially when used outside, we recommend using waterproof magnets, such as those made of polymer,
- The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is difficult,
- Health risk related to magnet particles may arise, when consumed by mistake, which is crucial in the protection of children. It should also be noted that tiny components from these assemblies have the potential to interfere with diagnostics after being swallowed,
- High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which may limit large-scale applications
Optimal lifting capacity of a neodymium magnet – what affects it?
The given lifting capacity of the magnet corresponds to the maximum lifting force, assessed in a perfect environment, namely:
- with the use of low-carbon steel plate serving as a magnetic yoke
- having a thickness of no less than 10 millimeters
- with a polished side
- with zero air gap
- under perpendicular detachment force
- under standard ambient temperature
Determinants of practical lifting force of a magnet
The lifting capacity of a magnet is determined by in practice the following factors, ordered from most important to least significant:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was measured using a steel plate with a smooth surface of optimal thickness (min. 20 mm), under perpendicular pulling force, however under attempts to slide the magnet the load capacity is reduced by as much as 75%. In addition, even a slight gap {between} the magnet’s surface and the plate decreases the lifting capacity.
Be Cautious with Neodymium Magnets
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets are noted for their fragility, which can cause them to become damaged.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
Neodymium magnets are the most powerful magnets ever created, and their power can surprise you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.
Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
If you have a finger between or alternatively on the path of attracting magnets, there may be a severe cut or even a fracture.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Caution!
In order to show why neodymium magnets are so dangerous, read the article - How very dangerous are strong neodymium magnets?.
