SM 32x225 [2xM8] / N52 - magnetic separator
magnetic separator
Catalog no 130361
GTIN: 5906301813095
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
225 mm
Weight
1205 g
676.50 ZŁ with VAT / pcs + price for transport
550.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to talk magnets?
Contact us by phone
+48 22 499 98 98
alternatively get in touch by means of
request form
the contact page.
Lifting power and appearance of magnets can be reviewed on our
our magnetic calculator.
Same-day processing for orders placed before 14:00.
SM 32x225 [2xM8] / N52 - magnetic separator
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their superior power, neodymium magnets have these key benefits:
- They virtually do not lose strength, because even after ten years, the performance loss is only ~1% (in laboratory conditions),
- Their ability to resist magnetic interference from external fields is notable,
- In other words, due to the glossy nickel coating, the magnet obtains an aesthetic appearance,
- They exhibit superior levels of magnetic induction near the outer area of the magnet,
- Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
- The ability for accurate shaping and customization to custom needs – neodymium magnets can be manufactured in multiple variants of geometries, which amplifies their functionality across industries,
- Important function in advanced technical fields – they are utilized in hard drives, electric motors, medical equipment along with technologically developed systems,
- Thanks to their efficiency per volume, small magnets offer high magnetic performance, with minimal size,
Disadvantages of magnetic elements:
- They are fragile when subjected to a strong impact. If the magnets are exposed to physical collisions, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture while also enhances its overall strength,
- They lose field intensity at increased temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Magnets exposed to damp air can corrode. Therefore, for outdoor applications, we recommend waterproof types made of rubber,
- The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is difficult,
- Safety concern due to small fragments may arise, if ingested accidentally, which is crucial in the health of young users. Furthermore, minuscule fragments from these magnets have the potential to disrupt scanning once in the system,
- Due to expensive raw materials, their cost is above average,
Highest magnetic holding force – what affects it?
The given holding capacity of the magnet means the highest holding force, determined under optimal conditions, that is:
- with the use of low-carbon steel plate serving as a magnetic yoke
- of a thickness of at least 10 mm
- with a smooth surface
- with zero air gap
- with vertical force applied
- under standard ambient temperature
Practical aspects of lifting capacity – factors
In practice, the holding capacity of a magnet is conditioned by these factors, arranged from the most important to the least relevant:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was conducted on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, however under parallel forces the lifting capacity is smaller. Additionally, even a small distance {between} the magnet and the plate lowers the lifting capacity.
Safety Precautions
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
Neodymium magnets produce strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium Magnets can attract to each other, pinch the skin, and cause significant injuries.
Magnets attract each other within a distance of several to around 10 cm from each other. Remember not to insert fingers between magnets or alternatively in their path when attract. Magnets, depending on their size, are able even cut off a finger or there can be a severe pressure or even a fracture.
Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Neodymium magnets are the most powerful magnets ever created, and their power can shock you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Neodymium magnetic are especially fragile, which leads to damage.
Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.
Neodymium magnets can demagnetize at high temperatures.
In certain circumstances, Neodymium magnets may experience demagnetization when subjected to high temperatures.
Caution!
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
