tel: +48 22 499 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our proposal. All magnesy on our website are available for immediate delivery (see the list). Check out the magnet price list for more details see the magnet price list

Magnets for treasure hunters F300 GOLD

Where to purchase powerful magnet? Magnet holders in airtight and durable steel casing are excellent for use in difficult weather conditions, including in the rain and snow more...

magnets with holders

Holders with magnets can be used to improve production, exploring underwater areas, or finding meteorites made of metal more information...

We promise to ship ordered magnets if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x275 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130294

GTIN: 5906301812876

5

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

275 mm

Weight

0.01 g

762.60 with VAT / pcs + price for transport

620.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
620.00 ZŁ
762.60 ZŁ
price from 5 pcs
589.00 ZŁ
724.47 ZŁ
price from 10 pcs
558.00 ZŁ
686.34 ZŁ

Need help making a decision?

Call us now +48 22 499 98 98 otherwise send us a note using inquiry form the contact section.
Weight as well as structure of a neodymium magnet can be estimated using our online calculation tool.

Same-day shipping for orders placed before 14:00.

SM 25x275 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 25x275 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130294
GTIN
5906301812876
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
275 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device roller magnetic is based on the use of neodymium magnets, which are welded in a construction made of stainless steel mostly AISI304. As a result, it is possible to efficiently remove ferromagnetic elements from other materials. A fundamental component of its operation is the repulsion of N and S poles of neodymium magnets, which causes magnetic substances to be targeted. The thickness of the magnet and its structure's pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators are designed to extract ferromagnetic elements. If the cans are ferromagnetic, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers are employed in the food industry for the elimination of metallic contaminants, for example iron fragments or iron dust. Our rods are made from acid-resistant steel, EN 1.4301, approved for use in food.
Magnetic rollers, otherwise cylindrical magnets, find application in metal separation, food production as well as recycling. They help in extracting iron dust in the course of the process of separating metals from other wastes.
Our magnetic rollers are composed of neodymium magnets anchored in a tube made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar will be with M8 threaded openings, enabling easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars stand out in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in materials, N42 and N52.
Usually it is believed that the greater the magnet's power, the better. However, the strength of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is more flat, the magnetic force lines are more compressed. On the other hand, when the magnet is thick, the force lines are longer and reach further.
For constructing the casings of magnetic separators - rollers, most often stainless steel is employed, particularly types AISI 304, AISI 316, and AISI 316L.
In a salt water environment, AISI 316 steel is recommended thanks to its outstanding anti-corrosion properties.
Magnetic bars are characterized by their unique configuration of poles and their capability to attract magnetic particles directly onto their surface, in contrast to other separators that may utilize more complicated filtration systems.
Technical designations and terms pertaining to magnetic separators comprise amongst others magnet pitch, polarity, and magnetic induction, as well as the steel type applied.
Magnetic induction for a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations less than N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic rollers offer many advantages, including excellent separation efficiency, strong magnetic field, and durability. However, some of the downsides may involve the requirement for frequent cleaning, greater weight, and potential installation difficulties.
By ensuring proper maintenance of neodymium magnetic rollers, it’s worth they should be regularly cleaned, avoiding temperatures up to 80°C. The rollers feature waterproofing IP67, so if they are not sealed, the magnets inside can rust and lose their power. Magnetic field measurements should be carried out once every 24 months. Caution should be taken during use, as it’s possible of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, which are used to remove metal contaminants from bulk and granular materials. They are applied in industries such as food processing, ceramics, and recycling, where the removal of iron metals and iron filings is essential.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their notable power, neodymium magnets have these key benefits:

  • They retain their attractive force for around 10 years – the loss is just ~1% (in theory),
  • They remain magnetized despite exposure to magnetic surroundings,
  • In other words, due to the glossy gold coating, the magnet obtains an professional appearance,
  • They possess intense magnetic force measurable at the magnet’s surface,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for customized forming and personalized design, these magnets can be produced in multiple shapes and sizes, greatly improving application potential,
  • Important function in modern technologies – they are used in HDDs, electric motors, healthcare devices or even high-tech tools,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, with minimal size,

Disadvantages of magnetic elements:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to mechanical hits, we recommend in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage and increases its overall strength,
  • They lose magnetic force at high temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to damp air can rust. Therefore, for outdoor applications, we suggest waterproof types made of plastic,
  • Limited ability to create precision features in the magnet – the use of a external casing is recommended,
  • Possible threat linked to microscopic shards may arise, when consumed by mistake, which is important in the health of young users. Moreover, small elements from these assemblies can disrupt scanning if inside the body,
  • Due to the price of neodymium, their cost is considerably higher,

Highest magnetic holding forcewhat affects it?

The given holding capacity of the magnet means the highest holding force, assessed in ideal conditions, namely:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • with a thickness of minimum 10 mm
  • with a polished side
  • with no separation
  • with vertical force applied
  • at room temperature

Determinants of lifting force in real conditions

In practice, the holding capacity of a magnet is conditioned by these factors, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined using a polished steel plate of suitable thickness (min. 20 mm), under vertically applied force, in contrast under parallel forces the holding force is lower. Additionally, even a small distance {between} the magnet’s surface and the plate decreases the holding force.

Handle with Care: Neodymium Magnets

Do not bring neodymium magnets close to GPS and smartphones.

Neodymium magnets generate strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

  Do not give neodymium magnets to youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets are the most powerful magnets ever created, and their strength can surprise you.

Familiarize yourself with our information to properly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.

Keep neodymium magnets away from TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Neodymium magnetic are extremely fragile, they easily fall apart as well as can become damaged.

Magnets made of neodymium are delicate as well as will break if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

If the joining of neodymium magnets is not under control, at that time they may crumble and also crack. You can't move them to each other. At a distance less than 10 cm you should have them extremely strongly.

Neodymium magnets can become demagnetized at high temperatures.

Despite the general resilience of magnets, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Caution!

To show why neodymium magnets are so dangerous, read the article - How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98