SM 25x275 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130294
GTIN: 5906301812876
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
275 mm
Weight
0.01 g
762.60 ZŁ with VAT / pcs + price for transport
620.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to talk magnets?
Give us a call
+48 888 99 98 98
otherwise contact us via
contact form
the contact section.
Force as well as appearance of neodymium magnets can be estimated with our
online calculation tool.
Orders placed before 14:00 will be shipped the same business day.
SM 25x275 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their magnetic capacity, neodymium magnets provide the following advantages:
- Their power remains stable, and after around ten years, it drops only by ~1% (according to research),
- They remain magnetized despite exposure to magnetic surroundings,
- In other words, due to the glossy nickel coating, the magnet obtains an professional appearance,
- They have extremely strong magnetic induction on the surface of the magnet,
- These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to profile),
- The ability for precise shaping or adjustment to specific needs – neodymium magnets can be manufactured in many forms and dimensions, which enhances their versatility in applications,
- Wide application in new technology industries – they are used in HDDs, electromechanical systems, healthcare devices along with technologically developed systems,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of magnetic elements:
- They can break when subjected to a heavy impact. If the magnets are exposed to shocks, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time increases its overall robustness,
- Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to wet conditions can degrade. Therefore, for outdoor applications, it's best to use waterproof types made of plastic,
- Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing threads directly in the magnet,
- Potential hazard linked to microscopic shards may arise, when consumed by mistake, which is significant in the health of young users. It should also be noted that miniature parts from these products might hinder health screening once in the system,
- High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications
Maximum magnetic pulling force – what contributes to it?
The given holding capacity of the magnet represents the highest holding force, calculated under optimal conditions, that is:
- with mild steel, used as a magnetic flux conductor
- having a thickness of no less than 10 millimeters
- with a smooth surface
- with zero air gap
- with vertical force applied
- in normal thermal conditions
What influences lifting capacity in practice
Practical lifting force is determined by elements, listed from the most critical to the less significant:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was measured with the use of a smooth steel plate of optimal thickness (min. 20 mm), under perpendicular detachment force, however under attempts to slide the magnet the holding force is lower. Additionally, even a slight gap {between} the magnet’s surface and the plate lowers the load capacity.
Handle Neodymium Magnets with Caution
Do not bring neodymium magnets close to GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Neodymium magnets are among the most powerful magnets on Earth. The surprising force they generate between each other can shock you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.
Neodymium magnets can become demagnetized at high temperatures.
Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Maintain neodymium magnets far from children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Neodymium magnets are especially fragile, resulting in damage.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.
Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
Magnets attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a significant injury may occur. Magnets, depending on their size, can even cut off a finger or alternatively there can be a serious pressure or a fracture.
Safety precautions!
In order to show why neodymium magnets are so dangerous, see the article - How very dangerous are very strong neodymium magnets?.