SM 25x275 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130294
GTIN: 5906301812876
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
275 mm
Weight
0.01 g
762.60 ZŁ with VAT / pcs + price for transport
620.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Call us now
+48 22 499 98 98
otherwise send us a note using
inquiry form
the contact section.
Weight as well as structure of a neodymium magnet can be estimated using our
online calculation tool.
Same-day shipping for orders placed before 14:00.
SM 25x275 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their notable power, neodymium magnets have these key benefits:
- They retain their attractive force for around 10 years – the loss is just ~1% (in theory),
- They remain magnetized despite exposure to magnetic surroundings,
- In other words, due to the glossy gold coating, the magnet obtains an professional appearance,
- They possess intense magnetic force measurable at the magnet’s surface,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- With the option for customized forming and personalized design, these magnets can be produced in multiple shapes and sizes, greatly improving application potential,
- Important function in modern technologies – they are used in HDDs, electric motors, healthcare devices or even high-tech tools,
- Thanks to their efficiency per volume, small magnets offer high magnetic performance, with minimal size,
Disadvantages of magnetic elements:
- They are fragile when subjected to a strong impact. If the magnets are exposed to mechanical hits, we recommend in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage and increases its overall strength,
- They lose magnetic force at high temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Magnets exposed to damp air can rust. Therefore, for outdoor applications, we suggest waterproof types made of plastic,
- Limited ability to create precision features in the magnet – the use of a external casing is recommended,
- Possible threat linked to microscopic shards may arise, when consumed by mistake, which is important in the health of young users. Moreover, small elements from these assemblies can disrupt scanning if inside the body,
- Due to the price of neodymium, their cost is considerably higher,
Highest magnetic holding force – what affects it?
The given holding capacity of the magnet means the highest holding force, assessed in ideal conditions, namely:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- with a thickness of minimum 10 mm
- with a polished side
- with no separation
- with vertical force applied
- at room temperature
Determinants of lifting force in real conditions
In practice, the holding capacity of a magnet is conditioned by these factors, arranged from the most important to the least relevant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was determined using a polished steel plate of suitable thickness (min. 20 mm), under vertically applied force, in contrast under parallel forces the holding force is lower. Additionally, even a small distance {between} the magnet’s surface and the plate decreases the holding force.
Handle with Care: Neodymium Magnets
Do not bring neodymium magnets close to GPS and smartphones.
Neodymium magnets generate strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Do not give neodymium magnets to youngest children.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Neodymium magnets are the most powerful magnets ever created, and their strength can surprise you.
Familiarize yourself with our information to properly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.
Keep neodymium magnets away from TV, wallet, and computer HDD.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
Neodymium magnetic are extremely fragile, they easily fall apart as well as can become damaged.
Magnets made of neodymium are delicate as well as will break if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
If the joining of neodymium magnets is not under control, at that time they may crumble and also crack. You can't move them to each other. At a distance less than 10 cm you should have them extremely strongly.
Neodymium magnets can become demagnetized at high temperatures.
Despite the general resilience of magnets, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Caution!
To show why neodymium magnets are so dangerous, read the article - How dangerous are powerful neodymium magnets?.
