SM 25x275 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130294
GTIN: 5906301812876
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
275 mm
Weight
0.01 g
762.60 ZŁ with VAT / pcs + price for transport
620.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Pick up the phone and ask
+48 888 99 98 98
or contact us through
inquiry form
the contact page.
Parameters and form of neodymium magnets can be estimated on our
our magnetic calculator.
Orders placed before 14:00 will be shipped the same business day.
SM 25x275 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their superior power, neodymium magnets have these key benefits:
- They have unchanged lifting capacity, and over nearly 10 years their performance decreases symbolically – ~1% (in testing),
- They remain magnetized despite exposure to magnetic surroundings,
- In other words, due to the glossy gold coating, the magnet obtains an professional appearance,
- The outer field strength of the magnet shows advanced magnetic properties,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- The ability for accurate shaping and adaptation to specific needs – neodymium magnets can be manufactured in many forms and dimensions, which extends the scope of their use cases,
- Key role in advanced technical fields – they serve a purpose in computer drives, electromechanical systems, clinical machines along with high-tech tools,
- Relatively small size with high magnetic force – neodymium magnets offer strong power in tiny dimensions, which allows for use in miniature devices
Disadvantages of rare earth magnets:
- They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to physical collisions, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage while also reinforces its overall durability,
- Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Due to corrosion risk in humid conditions, it is common to use sealed magnets made of plastic for outdoor use,
- Limited ability to create internal holes in the magnet – the use of a housing is recommended,
- Potential hazard linked to microscopic shards may arise, if ingested accidentally, which is crucial in the context of child safety. It should also be noted that small elements from these products have the potential to hinder health screening if inside the body,
- In cases of tight budgets, neodymium magnet cost is a challenge,
Maximum magnetic pulling force – what it depends on?
The given strength of the magnet represents the optimal strength, calculated in ideal conditions, that is:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- with a thickness of minimum 10 mm
- with a smooth surface
- in conditions of no clearance
- under perpendicular detachment force
- in normal thermal conditions
What influences lifting capacity in practice
The lifting capacity of a magnet is determined by in practice key elements, from primary to secondary:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was checked on the plate surface of 20 mm thickness, when a perpendicular force was applied, however under parallel forces the lifting capacity is smaller. Additionally, even a small distance {between} the magnet’s surface and the plate decreases the lifting capacity.
Handle Neodymium Magnets Carefully
Magnets made of neodymium are fragile as well as can easily break and get damaged.
Neodymium magnetic are delicate and will break if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Neodymium magnets are the most powerful, most remarkable magnets on earth, and the surprising force between them can shock you at first.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
Magnets will attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a major injury may occur. Magnets, depending on their size, can even cut off a finger or there can be a significant pressure or even a fracture.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Keep neodymium magnets away from GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Safety rules!
In order for you to know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous very powerful neodymium magnets.
