tel: +48 888 99 98 98

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our offer. Practically all "neodymium magnets" in our store are available for immediate delivery (check the list). Check out the magnet price list for more details check the magnet price list

Magnets for searching F300 GOLD

Where to buy very strong neodymium magnet? Magnetic holders in airtight, solid steel enclosure are perfect for use in difficult climate conditions, including during snow and rain more information...

magnets with holders

Holders with magnets can be applied to improve production processes, exploring underwater areas, or searching for meteors from gold see more...

Enjoy shipping of your order if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x175 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130359

GTIN: 5906301813071

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

175 mm

Weight

970 g

602.70 with VAT / pcs + price for transport

490.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
490.00 ZŁ
602.70 ZŁ
price from 10 pcs
441.00 ZŁ
542.43 ZŁ

Hunting for a discount?

Call us now +48 22 499 98 98 or let us know using form through our site.
Weight as well as form of a neodymium magnet can be estimated on our magnetic mass calculator.

Order by 14:00 and we’ll ship today!

SM 32x175 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x175 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130359
GTIN
5906301813071
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
175 mm [±0,1 mm]
Weight
970 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The main mechanism of the magnetic separator is the use of neodymium magnets, which are placed in a casing made of stainless steel usually AISI304. As a result, it is possible to efficiently separate ferromagnetic particles from different substances. A fundamental component of its operation is the use of repulsion of magnetic poles N and S, which allows magnetic substances to be collected. The thickness of the magnet and its structure pitch affect the power and range of the separator's operation.
Generally speaking, magnetic separators serve to segregate ferromagnetic elements. If the cans are made of ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers are used in food production for the elimination of metallic contaminants, for example iron fragments or iron dust. Our rollers are built from acid-resistant steel, AISI 304, suitable for contact with food.
Magnetic rollers, otherwise cylindrical magnets, are used in food production, metal separation as well as waste processing. They help in eliminating iron dust during the process of separating metals from other materials.
Our magnetic rollers are composed of a neodymium magnet anchored in a stainless steel tube cylinder of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded openings, enabling quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars stand out in terms of magnetic force lines, flux density and the field of the magnetic field. We produce them in materials, N42 and N52.
Generally it is believed that the greater the magnet's power, the more efficient it is. Nevertheless, the effectiveness of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and specific needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is thin, the magnetic force lines are short. Otherwise, in the case of a thicker magnet, the force lines are extended and reach further.
For constructing the casings of magnetic separators - rollers, most often stainless steel is used, particularly types AISI 316, AISI 316L, and AISI 304.
In a saltwater environment, AISI 316 steel is recommended thanks to its outstanding anti-corrosion properties.
Magnetic rollers stand out for their specific arrangement of poles and their capability to attract magnetic particles directly onto their surface, as opposed to other devices that often use complex filtration systems.
Technical designations and terms related to magnetic separators include amongst others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value near the magnetic pole. The result is verified in a value table - the lowest is N30. All designations below N27 or N25 suggest recycling that falls below the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. Disadvantages may include higher cost compared to other types of magnets and the need for regular maintenance.
To properly maintain of neodymium magnetic rollers, it’s worth regularly cleaning them from deposits, avoiding extreme temperatures up to 80°C, and protecting them from moisture if the threads are not sealed – in ours, they are. The rollers our rollers have waterproofing IP67, so if they are not sealed, the magnets inside can rust and weaken. Magnetic field measurements is recommended be carried out every two years. Caution should be taken during use, as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where the removal of iron metals and iron filings is essential.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their stability, neodymium magnets are valued for these benefits:

  • They retain their attractive force for nearly 10 years – the loss is just ~1% (according to analyses),
  • They remain magnetized despite exposure to strong external fields,
  • Thanks to the shiny finish and silver coating, they have an elegant appearance,
  • They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
  • Thanks to their exceptional temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
  • The ability for accurate shaping as well as customization to specific needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
  • Significant impact in new technology industries – they find application in data storage devices, electromechanical systems, healthcare devices or even high-tech tools,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, with minimal size,

Disadvantages of magnetic elements:

  • They are prone to breaking when subjected to a strong impact. If the magnets are exposed to shocks, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time strengthens its overall robustness,
  • Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to humidity can oxidize. Therefore, for outdoor applications, we suggest waterproof types made of non-metallic composites,
  • Limited ability to create internal holes in the magnet – the use of a magnetic holder is recommended,
  • Possible threat due to small fragments may arise, if ingested accidentally, which is crucial in the health of young users. Moreover, miniature parts from these devices may hinder health screening when ingested,
  • Due to a complex production process, their cost is considerably higher,

Highest magnetic holding forcewhat contributes to it?

The given holding capacity of the magnet represents the highest holding force, determined under optimal conditions, specifically:

  • with mild steel, serving as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a polished side
  • with no separation
  • with vertical force applied
  • in normal thermal conditions

Practical aspects of lifting capacity – factors

The lifting capacity of a magnet is determined by in practice key elements, ordered from most important to least significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on a smooth plate of optimal thickness, under perpendicular forces, whereas under parallel forces the holding force is lower. In addition, even a slight gap {between} the magnet’s surface and the plate decreases the lifting capacity.

Be Cautious with Neodymium Magnets

Do not bring neodymium magnets close to GPS and smartphones.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

  Magnets are not toys, children should not play with them.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their strength can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

If you have a finger between or alternatively on the path of attracting magnets, there may be a serious cut or even a fracture.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets are highly susceptible to damage, leading to shattering.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Be careful!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98