tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our offer. Practically all magnesy in our store are in stock for immediate delivery (check the list). Check out the magnet pricing for more details check the magnet price list

Magnets for fishing F200 GOLD

Where to buy powerful magnet? Holders with magnets in airtight and durable enclosure are perfect for use in challenging weather, including in the rain and snow more...

magnetic holders

Magnetic holders can be applied to enhance production, underwater discoveries, or locating meteorites from gold see...

We promise to ship ordered magnets on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x175 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130359

GTIN: 5906301813071

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

175 mm

Weight

970 g

602.70 with VAT / pcs + price for transport

490.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
490.00 ZŁ
602.70 ZŁ
price from 10 pcs
441.00 ZŁ
542.43 ZŁ

Can't decide what to choose?

Give us a call +48 888 99 98 98 alternatively contact us by means of inquiry form the contact page.
Weight and form of magnets can be verified on our force calculator.

Orders placed before 14:00 will be shipped the same business day.

SM 32x175 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x175 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130359
GTIN
5906301813071
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
175 mm [±0,1 mm]
Weight
970 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device roller magnetic is based on the use of neodymium magnets, placed in a casing made of stainless steel usually AISI304. In this way, it is possible to precisely separate ferromagnetic particles from the mixture. An important element of its operation is the use of repulsion of N and S poles of neodymium magnets, which causes magnetic substances to be collected. The thickness of the embedded magnet and its structure's pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators are designed to separate ferromagnetic elements. If the cans are made from ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers find application in food production to clear metallic contaminants, including iron fragments or iron dust. Our rods are made from acid-resistant steel, EN 1.4301, suitable for contact with food.
Magnetic rollers, often called cylindrical magnets, are employed in food production, metal separation as well as waste processing. They help in eliminating iron dust in the course of the process of separating metals from other wastes.
Our magnetic rollers consist of neodymium magnets embedded in a stainless steel tube cylinder made of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar can be with M8 threaded holes - 18 mm, enabling easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars stand out in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in materials, N42 and N52.
Often it is believed that the stronger the magnet, the more efficient it is. Nevertheless, the value of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and specific needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is more flat, the magnetic force lines are more compressed. On the other hand, in the case of a thicker magnet, the force lines are extended and extend over a greater distance.
For making the casings of magnetic separators - rollers, frequently stainless steel is utilized, especially types AISI 316, AISI 316L, and AISI 304.
In a saltwater contact, AISI 316 steel is recommended due to its outstanding anti-corrosion properties.
Magnetic bars stand out for their unique configuration of poles and their capability to attract magnetic particles directly onto their surface, as opposed to other separators that often use complex filtration systems.
Technical designations and terms related to magnetic separators include amongst others magnet pitch, polarity, and magnetic induction, as well as the steel type applied.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The result is verified in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as excellent separation efficiency, strong magnetic field, and durability. Disadvantages may include higher cost compared to other types of magnets and the need for regular maintenance.
For proper maintenance of neodymium magnetic rollers, it is recommended regularly cleaning them from contaminants, avoiding high temperatures up to 80°C, and shielding them from moisture if the threads are not sealed – in ours, they are. The rollers our rollers have waterproofing IP67, so if they are leaky, the magnets inside can oxidize and weaken. Magnetic field measurements is recommended be carried out every two years. Care should be taken, as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, which are used to remove metal contaminants from bulk and granular materials. They are applied in industries such as food processing, ceramics, and recycling, where metal separation is crucial.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their remarkable magnetic power, neodymium magnets offer the following advantages:

  • They retain their magnetic properties for around ten years – the drop is just ~1% (in theory),
  • They protect against demagnetization induced by ambient electromagnetic environments very well,
  • The use of a mirror-like gold surface provides a refined finish,
  • The outer field strength of the magnet shows remarkable magnetic properties,
  • With the right combination of compounds, they reach significant thermal stability, enabling operation at or above 230°C (depending on the form),
  • Thanks to the freedom in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in various configurations, which increases their application range,
  • Wide application in advanced technical fields – they are used in computer drives, electromechanical systems, healthcare devices along with high-tech tools,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to external force, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time enhances its overall durability,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a damp environment, especially when used outside, we recommend using moisture-resistant magnets, such as those made of non-metallic materials,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is restricted,
  • Safety concern due to small fragments may arise, especially if swallowed, which is notable in the family environments. Furthermore, small elements from these magnets can complicate medical imaging when ingested,
  • In cases of tight budgets, neodymium magnet cost may not be economically viable,

Maximum magnetic pulling forcewhat affects it?

The given holding capacity of the magnet means the highest holding force, assessed under optimal conditions, that is:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a refined outer layer
  • with no separation
  • under perpendicular detachment force
  • under standard ambient temperature

Magnet lifting force in use – key factors

Practical lifting force is determined by factors, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, in contrast under attempts to slide the magnet the lifting capacity is smaller. In addition, even a minimal clearance {between} the magnet’s surface and the plate reduces the load capacity.

Handle Neodymium Magnets Carefully

Keep neodymium magnets away from the wallet, computer, and TV.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Neodymium magnets will jump and also touch together within a distance of several to around 10 cm from each other.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets can demagnetize at high temperatures.

While Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

 It is important to maintain neodymium magnets away from children.

Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Neodymium magnets are especially delicate, which leads to damage.

Magnets made of neodymium are fragile and will break if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Safety precautions!

In order for you to know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous very powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98