SM 32x175 [2xM8] / N52 - magnetic separator
magnetic separator
Catalog no 130359
GTIN: 5906301813071
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
175 mm
Weight
970 g
602.70 ZŁ with VAT / pcs + price for transport
490.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Hunting for a discount?
Pick up the phone and ask
+48 22 499 98 98
if you prefer drop us a message using
request form
our website.
Force as well as form of magnets can be verified on our
magnetic mass calculator.
Order by 14:00 and we’ll ship today!
SM 32x175 [2xM8] / N52 - magnetic separator
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their tremendous pulling force, neodymium magnets offer the following advantages:
- They have constant strength, and over around ten years their attraction force decreases symbolically – ~1% (in testing),
- Their ability to resist magnetic interference from external fields is notable,
- Thanks to the shiny finish and nickel coating, they have an elegant appearance,
- The outer field strength of the magnet shows advanced magnetic properties,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- The ability for accurate shaping and adjustment to specific needs – neodymium magnets can be manufactured in many forms and dimensions, which amplifies their functionality across industries,
- Significant impact in advanced technical fields – they find application in computer drives, electromechanical systems, diagnostic apparatus as well as sophisticated instruments,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, in miniature format,
Disadvantages of rare earth magnets:
- They may fracture when subjected to a powerful impact. If the magnets are exposed to external force, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time strengthens its overall durability,
- High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a damp environment. If exposed to rain, we recommend using sealed magnets, such as those made of polymer,
- Limited ability to create internal holes in the magnet – the use of a magnetic holder is recommended,
- Health risk from tiny pieces may arise, when consumed by mistake, which is notable in the family environments. It should also be noted that minuscule fragments from these magnets may hinder health screening if inside the body,
- In cases of tight budgets, neodymium magnet cost is a challenge,
Magnetic strength at its maximum – what it depends on?
The given lifting capacity of the magnet represents the maximum lifting force, determined in ideal conditions, that is:
- with the use of low-carbon steel plate serving as a magnetic yoke
- of a thickness of at least 10 mm
- with a smooth surface
- with no separation
- under perpendicular detachment force
- under standard ambient temperature
Key elements affecting lifting force
In practice, the holding capacity of a magnet is affected by the following aspects, from crucial to less important:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was conducted on a smooth plate of suitable thickness, under a perpendicular pulling force, whereas under parallel forces the lifting capacity is smaller. In addition, even a small distance {between} the magnet’s surface and the plate decreases the holding force.
Safety Precautions
Neodymium magnetic are characterized by being fragile, which can cause them to become damaged.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their power can surprise you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
Magnets may crack or alternatively crumble with careless connecting to each other. Remember not to move them to each other or have them firmly in hands at a distance less than 10 cm.
The magnet is coated with nickel - be careful if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Keep neodymium magnets away from TV, wallet, and computer HDD.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.
Keep neodymium magnets away from people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Caution!
In order for you to know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous powerful neodymium magnets.
