SM 32x175 [2xM8] / N52 - magnetic separator
magnetic separator
Catalog no 130359
GTIN: 5906301813071
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
175 mm
Weight
970 g
602.70 ZŁ with VAT / pcs + price for transport
490.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Give us a call
+48 22 499 98 98
alternatively drop us a message through
contact form
the contact form page.
Strength as well as appearance of magnetic components can be tested with our
power calculator.
Orders submitted before 14:00 will be dispatched today!
SM 32x175 [2xM8] / N52 - magnetic separator
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their remarkable strength, neodymium magnets offer the following advantages:
- They virtually do not lose strength, because even after 10 years, the performance loss is only ~1% (based on calculations),
- They protect against demagnetization induced by ambient magnetic fields effectively,
- By applying a bright layer of nickel, the element gains a modern look,
- They possess intense magnetic force measurable at the magnet’s surface,
- With the right combination of materials, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the design),
- With the option for tailored forming and precise design, these magnets can be produced in numerous shapes and sizes, greatly improving design adaptation,
- Significant impact in advanced technical fields – they find application in HDDs, electromechanical systems, clinical machines as well as technologically developed systems,
- Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications
Disadvantages of rare earth magnets:
- They may fracture when subjected to a powerful impact. If the magnets are exposed to external force, we recommend in a metal holder. The steel housing, in the form of a holder, protects the magnet from fracture and strengthens its overall durability,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a wet environment. If exposed to rain, we recommend using encapsulated magnets, such as those made of plastic,
- Limited ability to create internal holes in the magnet – the use of a magnetic holder is recommended,
- Safety concern due to small fragments may arise, when consumed by mistake, which is crucial in the context of child safety. Additionally, tiny components from these devices have the potential to interfere with diagnostics when ingested,
- High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which can restrict large-scale applications
Maximum lifting capacity of the magnet – what contributes to it?
The given pulling force of the magnet corresponds to the maximum force, determined in the best circumstances, that is:
- with the use of low-carbon steel plate acting as a magnetic yoke
- of a thickness of at least 10 mm
- with a refined outer layer
- with zero air gap
- with vertical force applied
- under standard ambient temperature
Determinants of lifting force in real conditions
Practical lifting force is dependent on factors, by priority:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was determined with the use of a polished steel plate of optimal thickness (min. 20 mm), under perpendicular detachment force, whereas under shearing force the load capacity is reduced by as much as 75%. In addition, even a slight gap {between} the magnet and the plate decreases the holding force.
Precautions
Keep neodymium magnets as far away as possible from GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their strength can shock you.
To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Keep neodymium magnets away from TV, wallet, and computer HDD.
Neodymium magnets generate intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.
Neodymium magnets bounce and also touch each other mutually within a distance of several to almost 10 cm from each other.
Magnets made of neodymium are highly susceptible to damage, leading to breaking.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Neodymium magnets can demagnetize at high temperatures.
Despite the fact that magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Safety precautions!
So you are aware of why neodymium magnets are so dangerous, read the article titled How dangerous are very strong neodymium magnets?.