tel: +48 22 499 98 98

neodymium magnets

We provide red color magnetic Nd2Fe14B - our offer. All "magnets" in our store are in stock for immediate delivery (see the list). See the magnet pricing for more details check the magnet price list

Magnets for water searching F400 GOLD

Where to purchase strong magnet? Magnet holders in airtight, solid steel casing are excellent for use in challenging weather conditions, including during snow and rain more...

magnetic holders

Holders with magnets can be used to enhance production processes, underwater discoveries, or locating meteors made of ore see...

We promise to ship ordered magnets on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x175 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130359

GTIN: 5906301813071

5

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

175 mm

Weight

970 g

602.70 with VAT / pcs + price for transport

490.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
490.00 ZŁ
602.70 ZŁ
price from 6 pcs
465.50 ZŁ
572.56 ZŁ
price from 9 pcs
441.00 ZŁ
542.43 ZŁ

Do you have trouble choosing?

Contact us by phone +48 888 99 98 98 otherwise drop us a message via request form the contact page.
Parameters along with form of magnetic components can be tested with our online calculation tool.

Order by 14:00 and we’ll ship today!

SM 32x175 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x175 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130359
GTIN
5906301813071
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
175 mm [±0,1 mm]
Weight
970 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The main mechanism of the magnetic separator is the use of neodymium magnets, which are embedded in a construction made of stainless steel usually AISI304. In this way, it is possible to effectively segregate ferromagnetic particles from different substances. A fundamental component of its operation is the repulsion of N and S poles of neodymium magnets, which enables magnetic substances to be targeted. The thickness of the magnet and its structure's pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators are designed to extract ferromagnetic particles. If the cans are made of ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers are used in food production to remove metallic contaminants, for example iron fragments or iron dust. Our rollers are constructed from acid-resistant steel, EN 1.4301, suitable for use in food.
Magnetic rollers, otherwise cylindrical magnets, find application in food production, metal separation as well as recycling. They help in extracting iron dust during the process of separating metals from other wastes.
Our magnetic rollers are built with a neodymium magnet anchored in a stainless steel tube cylinder of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar will be with M8 threaded openings, enabling simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars differ in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in two materials, N42 and N52.
Usually it is believed that the stronger the magnet, the better. Nevertheless, the value of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and expected needs. The standard operating temperature of a magnetic bar is 80°C.
In the case where the magnet is more flat, the magnetic force lines will be short. On the other hand, in the case of a thicker magnet, the force lines will be longer and reach further.
For creating the casings of magnetic separators - rollers, frequently stainless steel is employed, especially types AISI 304, AISI 316, and AISI 316L.
In a salt water environment, type AISI 316 steel is recommended due to its excellent corrosion resistance.
Magnetic bars stand out for their specific arrangement of poles and their ability to attract magnetic particles directly onto their surface, as opposed to other devices that often use more complicated filtration systems.
Technical designations and terms pertaining to magnetic separators include amongst others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value near the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as excellent separation efficiency, strong magnetic field, and durability. However, some of the downsides may involve the requirement for frequent cleaning, greater weight, and potential installation difficulties.
To properly maintain of neodymium magnetic rollers, you should washing after each use, avoiding temperatures above 80 degrees. The rollers feature waterproofing IP67, so if they are leaky, the magnets inside can rust and weaken. Magnetic field measurements should be carried out every two years. Caution should be taken during use, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, used for separating ferromagnetic contaminants from raw materials. They are used in the food industry, recycling, and plastic processing, where metal separation is crucial.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their consistent magnetism, neodymium magnets have these key benefits:

  • They virtually do not lose power, because even after ten years, the performance loss is only ~1% (based on calculations),
  • Their ability to resist magnetic interference from external fields is among the best,
  • The use of a mirror-like gold surface provides a eye-catching finish,
  • Magnetic induction on the surface of these magnets is impressively powerful,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • Thanks to the flexibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in diverse shapes and sizes, which increases their application range,
  • Significant impact in cutting-edge sectors – they find application in HDDs, rotating machines, diagnostic apparatus along with sophisticated instruments,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They are prone to breaking when subjected to a strong impact. If the magnets are exposed to physical collisions, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture and enhances its overall robustness,
  • They lose field intensity at increased temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a moist environment – during outdoor use, we recommend using encapsulated magnets, such as those made of non-metallic materials,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing complex structures directly in the magnet,
  • Health risk related to magnet particles may arise, if ingested accidentally, which is significant in the protection of children. Moreover, tiny components from these products might interfere with diagnostics when ingested,
  • Due to a complex production process, their cost is considerably higher,

Exercise Caution with Neodymium Magnets

  Neodymium magnets should not be around children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Keep neodymium magnets away from GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Magnets made of neodymium are highly susceptible to damage, resulting in shattering.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets can become demagnetized at high temperatures.

While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Neodymium magnets are the strongest magnets ever created, and their strength can shock you.

Familiarize yourself with our information to properly handle these magnets and avoid significant injuries to your body and prevent damage to the magnets.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

If joining of neodymium magnets is not controlled, then they may crumble and also crack. You can't move them to each other. At a distance less than 10 cm you should hold them very strongly.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Safety rules!

To illustrate why neodymium magnets are so dangerous, see the article - How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98