KM HF - 22 kg - magnetic bracket
magnetic bracket
Catalog no 170257
GTIN: 5906301813699
Weight
593 g
Load capacity
22 kg / 215.75 N
29.52 ZŁ with VAT / pcs + price for transport
24.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Looking for a better price?
Call us now
+48 888 99 98 98
otherwise send us a note through
our online form
the contact form page.
Force along with shape of a magnet can be reviewed on our
magnetic calculator.
Same-day shipping for orders placed before 14:00.
KM HF - 22 kg - magnetic bracket
Magnetic properties of material
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their consistent magnetic energy, neodymium magnets have these key benefits:
- They do not lose their strength nearly ten years – the loss of lifting capacity is only ~1% (based on measurements),
- They protect against demagnetization induced by surrounding magnetic fields effectively,
- By applying a shiny layer of silver, the element gains a modern look,
- They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
- These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to profile),
- The ability for custom shaping as well as customization to specific needs – neodymium magnets can be manufactured in many forms and dimensions, which enhances their versatility in applications,
- Significant impact in new technology industries – they are utilized in hard drives, electromechanical systems, clinical machines or even sophisticated instruments,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of rare earth magnets:
- They can break when subjected to a sudden impact. If the magnets are exposed to mechanical hits, it is advisable to use in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time reinforces its overall resistance,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Due to corrosion risk in humid conditions, it is common to use sealed magnets made of protective material for outdoor use,
- The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is restricted,
- Potential hazard linked to microscopic shards may arise, in case of ingestion, which is important in the family environments. Moreover, tiny components from these magnets may complicate medical imaging after being swallowed,
- Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications
Magnetic strength at its maximum – what it depends on?
The given strength of the magnet represents the optimal strength, assessed in ideal conditions, that is:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- with a thickness of minimum 10 mm
- with a refined outer layer
- with no separation
- in a perpendicular direction of force
- in normal thermal conditions
Practical lifting capacity: influencing factors
The lifting capacity of a magnet is determined by in practice the following factors, ordered from most important to least significant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed by applying a steel plate with a smooth surface of suitable thickness (min. 20 mm), under vertically applied force, however under attempts to slide the magnet the load capacity is reduced by as much as 5 times. Moreover, even a minimal clearance {between} the magnet and the plate reduces the load capacity.
Precautions
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are among the strongest magnets on Earth. The surprising force they generate between each other can shock you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.
Never bring neodymium magnets close to a phone and GPS.
Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets can demagnetize at high temperatures.
While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Neodymium magnetic are highly susceptible to damage, resulting in breaking.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
Magnets will bounce and contact together within a distance of several to almost 10 cm from each other.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Do not give neodymium magnets to children.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.
Keep neodymium magnets away from TV, wallet, and computer HDD.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Be careful!
To raise awareness of why neodymium magnets are so dangerous, read the article titled How very dangerous are very powerful neodymium magnets?.
