KM HF - 22 kg - magnetic bracket
magnetic bracket
Catalog no 170257
GTIN: 5906301813699
Weight
593 g
Load capacity
22 kg / 215.75 N
29.52 ZŁ with VAT / pcs + price for transport
24.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Call us
+48 888 99 98 98
if you prefer let us know through
inquiry form
the contact page.
Weight as well as structure of magnetic components can be verified on our
modular calculator.
Order by 14:00 and we’ll ship today!
KM HF - 22 kg - magnetic bracket
Magnetic properties of material
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their magnetic capacity, neodymium magnets provide the following advantages:
- Their strength is maintained, and after around ten years, it drops only by ~1% (theoretically),
- They show superior resistance to demagnetization from external magnetic fields,
- In other words, due to the metallic silver coating, the magnet obtains an aesthetic appearance,
- They possess significant magnetic force measurable at the magnet’s surface,
- Thanks to their high temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
- Thanks to the possibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in diverse shapes and sizes, which expands their functional possibilities,
- Key role in cutting-edge sectors – they are used in HDDs, electromechanical systems, medical equipment along with high-tech tools,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of magnetic elements:
- They can break when subjected to a powerful impact. If the magnets are exposed to physical collisions, we recommend in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks and additionally strengthens its overall durability,
- They lose magnetic force at extreme temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a humid environment – during outdoor use, we recommend using waterproof magnets, such as those made of plastic,
- The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is restricted,
- Health risk from tiny pieces may arise, especially if swallowed, which is significant in the protection of children. It should also be noted that tiny components from these devices have the potential to hinder health screening once in the system,
- High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications
Maximum lifting capacity of the magnet – what affects it?
The given lifting capacity of the magnet represents the maximum lifting force, measured in ideal conditions, namely:
- with the use of low-carbon steel plate serving as a magnetic yoke
- with a thickness of minimum 10 mm
- with a smooth surface
- with no separation
- under perpendicular detachment force
- in normal thermal conditions
Determinants of practical lifting force of a magnet
Practical lifting force is determined by factors, by priority:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed with the use of a smooth steel plate of suitable thickness (min. 20 mm), under vertically applied force, however under shearing force the holding force is lower. Additionally, even a small distance {between} the magnet’s surface and the plate decreases the holding force.
Precautions
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can become demagnetized at high temperatures.
Whilst Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.
If you have a finger between or on the path of attracting magnets, there may be a large cut or even a fracture.
Magnets made of neodymium are highly susceptible to damage, resulting in breaking.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can shock you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.
Keep neodymium magnets away from people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Do not give neodymium magnets to children.
Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Safety precautions!
To show why neodymium magnets are so dangerous, read the article - How very dangerous are strong neodymium magnets?.
