tel: +48 22 499 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our offer. Practically all "magnets" on our website are available for immediate purchase (check the list). See the magnet pricing for more details see the magnet price list

Magnets for fishing F300 GOLD

Where to buy strong neodymium magnet? Magnet holders in airtight and durable enclosure are perfect for use in variable and difficult climate conditions, including during snow and rain see...

magnets with holders

Magnetic holders can be used to improve production processes, underwater discoveries, or locating meteorites from gold see...

We promise to ship ordered magnets on the day of purchase before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x125 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130357

GTIN: 5906301813057

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

125 mm

Weight

690 g

455.10 with VAT / pcs + price for transport

370.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
370.00 ZŁ
455.10 ZŁ
price from 10 pcs
351.50 ZŁ
432.34 ZŁ
price from 15 pcs
333.00 ZŁ
409.59 ZŁ

Want to talk magnets?

Give us a call +48 888 99 98 98 otherwise get in touch using our online form the contact section.
Strength as well as form of a neodymium magnet can be calculated on our online calculation tool.

Same-day processing for orders placed before 14:00.

SM 32x125 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x125 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130357
GTIN
5906301813057
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
125 mm [±0,1 mm]
Weight
690 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device roller magnetic is based on the use of neodymium magnets, which are embedded in a casing made of stainless steel mostly AISI304. As a result, it is possible to efficiently separate ferromagnetic elements from the mixture. A fundamental component of its operation is the repulsion of N and S poles of neodymium magnets, which enables magnetic substances to be collected. The thickness of the embedded magnet and its structure pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators are designed to extract ferromagnetic elements. If the cans are made of ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers find application in the food sector for the elimination of metallic contaminants, for example iron fragments or iron dust. Our rollers are constructed from durable acid-resistant steel, AISI 304, approved for use in food.
Magnetic rollers, otherwise magnetic separators, are employed in metal separation, food production as well as recycling. They help in extracting iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers are built with a neodymium magnet placed in a stainless steel tube casing made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded openings, enabling simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars differ in terms of magnetic force lines, flux density and the field of the magnetic field. We produce them in materials, N42 as well as N52.
Generally it is believed that the greater the magnet's power, the better. However, the strength of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is thin, the magnetic force lines will be short. Otherwise, in the case of a thicker magnet, the force lines are longer and extend over a greater distance.
For making the casings of magnetic separators - rollers, frequently stainless steel is used, particularly types AISI 304, AISI 316, and AISI 316L.
In a salt water contact, type AISI 316 steel is recommended thanks to its outstanding corrosion resistance.
Magnetic bars are characterized by their specific arrangement of poles and their capability to attract magnetic particles directly onto their surface, as opposed to other devices that may utilize more complicated filtration systems.
Technical designations and terms pertaining to magnetic separators comprise amongst others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value near the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations less than N27 or N25 indicate recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. On the other hand, among the drawbacks, one can mention the requirement for frequent cleaning, greater weight, and potential installation difficulties.
By ensuring proper maintenance of neodymium magnetic rollers, it is recommended they should be regularly cleaned, avoiding temperatures above 80 degrees. The rollers feature waterproofing IP67, so if they are leaky, the magnets inside can rust and weaken. Testing of the rollers is recommended be carried out once every 24 months. Care should be taken, as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, which are used to remove metal contaminants from bulk and granular materials. They are used in the food industry, recycling, and plastic processing, where metal separation is crucial.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their strong magnetism, neodymium magnets have these key benefits:

  • They retain their magnetic properties for nearly ten years – the loss is just ~1% (in theory),
  • They remain magnetized despite exposure to magnetic noise,
  • The use of a decorative gold surface provides a eye-catching finish,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • The ability for custom shaping and adaptation to custom needs – neodymium magnets can be manufactured in many forms and dimensions, which amplifies their functionality across industries,
  • Key role in new technology industries – they serve a purpose in computer drives, rotating machines, clinical machines along with technologically developed systems,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to external force, we recommend in a metal holder. The steel housing, in the form of a holder, protects the magnet from fracture while also enhances its overall robustness,
  • High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of synthetic coating for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing fine shapes directly in the magnet,
  • Possible threat due to small fragments may arise, if ingested accidentally, which is notable in the family environments. It should also be noted that small elements from these assemblies have the potential to interfere with diagnostics when ingested,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which may limit large-scale applications

Breakaway strength of the magnet in ideal conditionswhat affects it?

The given pulling force of the magnet means the maximum force, determined in the best circumstances, that is:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • in conditions of no clearance
  • in a perpendicular direction of force
  • at room temperature

What influences lifting capacity in practice

In practice, the holding capacity of a magnet is conditioned by these factors, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined using a polished steel plate of suitable thickness (min. 20 mm), under vertically applied force, however under attempts to slide the magnet the load capacity is reduced by as much as fivefold. In addition, even a slight gap {between} the magnet and the plate decreases the load capacity.

Caution with Neodymium Magnets

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

Avoid bringing neodymium magnets close to a phone or GPS.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

 Keep neodymium magnets far from youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

Neodymium magnets bounce and clash mutually within a radius of several to almost 10 cm from each other.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are especially fragile, which leads to damage.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Safety rules!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How very dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98