tel: +48 888 99 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our proposal. Practically all magnesy on our website are in stock for immediate purchase (see the list). Check out the magnet price list for more details see the magnet price list

Magnets for searching F400 GOLD

Where to buy powerful neodymium magnet? Magnet holders in solid and airtight steel casing are excellent for use in difficult, demanding weather conditions, including in the rain and snow see more...

magnets with holders

Magnetic holders can be used to facilitate manufacturing, underwater exploration, or searching for meteors made of metal more information...

Order always shipped on the same day before 2:00 PM on working days.

Dhit sp. z o.o.
Product available Ships tomorrow

SM 32x125 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130357

GTIN: 5906301813057

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

125 mm

Weight

690 g

455.10 with VAT / pcs + price for transport

370.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
370.00 ZŁ
455.10 ZŁ
price from 10 pcs
351.50 ZŁ
432.34 ZŁ
price from 15 pcs
333.00 ZŁ
409.59 ZŁ

Do you have doubts?

Call us +48 22 499 98 98 if you prefer send us a note by means of contact form the contact section.
Specifications as well as shape of magnetic components can be reviewed on our force calculator.

Same-day processing for orders placed before 14:00.

SM 32x125 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 32x125 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130357
GTIN
5906301813057
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
125 mm [±0,1 mm]
Weight
690 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

It is the heart of every magnetic filter used in industry. It is used for cleaning bulk products (flour, sugar, granules) and liquids (oils, juices). High magnetic induction allows catching the finest iron particles.
The rod consists of a casing tube made of acid-resistant steel (AISI 304/316). The center is filled with NdFeB magnets arranged to maximize the field on the surface. Such construction ensures resistance to corrosion, water, and acids.
Due to high power, direct removal of filings can be troublesome. The most effective method is using adhesive tape to wrap the dirt and pull it off. In industry, cover tubes (Easy Clean) are used, from which the magnet is slid out.
The more Gauss, the smaller and weakly magnetic particles will be caught. For basic iron protection, standard power is enough. For the food and precision industry, we recommend the highest parameters.
Yes, as a manufacturer, we make rods of any length and diameter (standard is 25mm and 32mm). The rod end is adapted to the mounting system in your separator. Contact us for a quote on non-standard dimensions.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their tremendous pulling force, neodymium magnets offer the following advantages:

  • They have unchanged lifting capacity, and over nearly ten years their attraction force decreases symbolically – ~1% (according to theory),
  • They protect against demagnetization induced by surrounding magnetic fields very well,
  • Because of the brilliant layer of nickel, the component looks aesthetically refined,
  • The outer field strength of the magnet shows remarkable magnetic properties,
  • These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to profile),
  • Thanks to the flexibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which broadens their application range,
  • Important function in new technology industries – they are used in computer drives, rotating machines, medical equipment along with sophisticated instruments,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, with minimal size,

Disadvantages of neodymium magnets:

  • They may fracture when subjected to a sudden impact. If the magnets are exposed to shocks, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture and additionally enhances its overall durability,
  • They lose power at high temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of protective material for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is restricted,
  • Safety concern related to magnet particles may arise, in case of ingestion, which is notable in the family environments. Moreover, tiny components from these assemblies may complicate medical imaging after being swallowed,
  • Due to the price of neodymium, their cost is above average,

Maximum lifting capacity of the magnetwhat it depends on?

The given holding capacity of the magnet corresponds to the highest holding force, measured in the best circumstances, that is:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • with zero air gap
  • in a perpendicular direction of force
  • under standard ambient temperature

Lifting capacity in practice – influencing factors

Practical lifting force is dependent on elements, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was measured on the plate surface of 20 mm thickness, when a perpendicular force was applied, in contrast under shearing force the lifting capacity is smaller. Additionally, even a minimal clearance {between} the magnet and the plate lowers the holding force.

Caution with Neodymium Magnets

Neodymium Magnets can attract to each other, pinch the skin, and cause significant injuries.

Neodymium magnets jump and touch each other mutually within a distance of several to around 10 cm from each other.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Neodymium magnets produce strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

  Magnets are not toys, youngest should not play with them.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnetic are extremely fragile, resulting in their cracking.

Neodymium magnets are extremely fragile, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their strength can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Neodymium magnets can become demagnetized at high temperatures.

Despite the general resilience of magnets, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Safety precautions!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98