tel: +48 22 499 98 98

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our store's offer. All magnesy neodymowe on our website are in stock for immediate purchase (see the list). See the magnet price list for more details see the magnet price list

Magnet for treasure hunters F200 GOLD

Where to purchase very strong magnet? Magnet holders in airtight, solid enclosure are excellent for use in challenging weather, including during snow and rain read...

magnetic holders

Holders with magnets can be applied to improve manufacturing, underwater discoveries, or searching for space rocks made of metal check...

Order is shipped if the order is placed by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping in 3 days!

SM 32x125 [2xM8] / N52 - magnetic roller

magnetic separator

catalog number 130357

GTIN: 5906301813057

no reviews

diameter Ø

32 mm [±0,1 mm]

height

125 mm [±0,1 mm]

max. temperature

≤ 80 °C

455.10 gross price (including VAT) / pcs +

370.00 ZŁ net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
370.00 ZŁ
455.10 ZŁ
price from 6 pcs
351.50 ZŁ
432.34 ZŁ
price from 12 pcs
333.00 ZŁ
409.59 ZŁ

Want to bargain?

Give us a call tel: +48 22 499 98 98 or get in touch through contact form on the contact page. You can check the strength as well as the appearance of neodymium magnets in our power calculator power calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: magnetic separator 32x125 [2xM8] / N52

Characteristics: magnetic separator 32x125 [2xM8] / N52
Properties
Values
catalog number
130357
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
32 mm [±0,1 mm]
height
125 mm [±0,1 mm]
max. temperature ?
≤ 80 °C
weight
690.00 g
execution tolerance
± 0.1 mm
rodzaj materiału
AISI 304 - bezpieczna dla żywności
rodzaj magnesów
NdFeB N52
ilość gwintów
2x [M8] wewnętrzne
biegunowość
obwodowa - 4 nabiegunniki
indukcja magnetyczna
~ 10 000 Gauss [±5%]
max. temp. pracy
poniżej ≤ 80°C
grubość rury osłonowej
1 mm

Magnetic properties of the material N52

material characteristics N52
Properties
Values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
48-53
BH max MGOe
energy density [Min. - Max.]
380-422
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
The magnetic separator, namely the magnetic roller, uses the force of neodymium magnets, which are welded in a casing made of stainless steel mostly AISI304. Due to this, it is possible to efficiently remove ferromagnetic elements from other materials. A key aspect of its operation is the use of repulsion of magnetic poles N and S, which allows magnetic substances to be targeted. The thickness of the magnet and its structure's pitch affect the range and strength of the separator's operation.
Generally speaking, magnetic separators serve to segregate ferromagnetic elements. If the cans are made from ferromagnetic materials, the separator will effectively segregate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers find application in the food industry to clear metallic contaminants, such as iron fragments or iron dust. Our rollers are constructed from acid-resistant steel, EN 1.4301, approved for contact with food.
Magnetic rollers, otherwise magnetic separators, are employed in metal separation, food production as well as waste processing. They help in eliminating iron dust during the process of separating metals from other wastes.
Our magnetic rollers consist of neodymium magnets anchored in a stainless steel tube cylinder of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar can be with M8 threaded holes - 18 mm, enabling easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars differ in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in two materials, N42 as well as N52.
Generally it is believed that the greater the magnet's power, the better. Nevertheless, the strength of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and expected needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is thin, the magnetic force lines are more compressed. On the other hand, in the case of a thicker magnet, the force lines will be extended and reach further.
For creating the casings of magnetic separators - rollers, usually stainless steel is employed, especially types AISI 316, AISI 316L, and AISI 304.
In a salt water environment, type AISI 316 steel is recommended due to its outstanding anti-corrosion properties.
Magnetic bars stand out for their specific arrangement of poles and their capability to attract magnetic particles directly onto their surface, as opposed to other devices that may utilize more complicated filtration systems.
Technical designations and terms pertaining to magnetic separators include amongst others polarity, magnetic induction, magnet pitch, as well as the steel type applied.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value near the magnetic pole. The result is checked in a value table - the lowest is N30. All designations below N27 or N25 suggest recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer a range of benefits such as higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. However, some of the downsides may involve higher cost compared to other types of magnets and the need for regular maintenance.
To properly maintain of neodymium magnetic rollers, you should they should be regularly cleaned, avoiding temperatures above 80 degrees. The rollers feature waterproofing IP67, so if they are not sealed, the magnets inside can rust and weaken. Magnetic field measurements should be carried out once every 24 months. Care should be taken, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, which are used to remove metal contaminants from bulk and granular materials. They are applied in industries such as food processing, ceramics, and recycling, where metal separation is crucial.

Choose recommended products

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to immense power, neodymium magnets have the following advantages:

  • They do not lose their power (of the magnet). After approximately 10 years, their power decreases by only ~1% (theoretically),
  • They are exceptionally resistant to demagnetization caused by an external magnetic field,
  • Thanks to the shiny finish and nickel, gold, or silver coating, they have an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C and above...
  • Due to the option of accurate forming or adaptation to individual needs – neodymium magnets can be produced in various forms and dimensions, which expands the range of their possible uses.
  • Key role in the industry of new technologies – find application in computer drives, electric drive mechanisms, medical apparatus or other highly developed apparatuses.

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts and at the same time increases its overall strength,
  • Magnets lose their strength due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent reduction in strength (although it is worth noting that this is dependent on the shape and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Possible danger arising from small pieces of magnets pose a threat, if swallowed, which is particularly important in the context of child safety. It's also worth noting that small elements of these products have the potential to hinder the diagnostic process after entering the body.

Exercise Caution with Neodymium Magnets

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets can demagnetize at high temperatures.

In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Magnets made of neodymium are especially delicate, which leads to damage.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Magnets may crack or crumble with uncontrolled connecting to each other. Remember not to approach them to each other or hold them firmly in hands at a distance less than 10 cm.

Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can shock you at first.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

  Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

To raise awareness of why neodymium magnets are so dangerous, read the article titled How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98