SM 32x125 [2xM8] / N52 - magnetic separator
magnetic separator
Catalog no 130357
GTIN: 5906301813057
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
125 mm
Weight
690 g
455.10 ZŁ with VAT / pcs + price for transport
370.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure about your choice?
Contact us by phone
+48 888 99 98 98
alternatively get in touch through
contact form
the contact section.
Weight and shape of a neodymium magnet can be reviewed using our
magnetic mass calculator.
Order by 14:00 and we’ll ship today!
SM 32x125 [2xM8] / N52 - magnetic separator
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their strong magnetic energy, neodymium magnets have these key benefits:
- They have constant strength, and over nearly ten years their attraction force decreases symbolically – ~1% (in testing),
- They protect against demagnetization induced by ambient magnetic fields effectively,
- The use of a polished silver surface provides a eye-catching finish,
- They have exceptional magnetic induction on the surface of the magnet,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- The ability for precise shaping or customization to custom needs – neodymium magnets can be manufactured in many forms and dimensions, which enhances their versatility in applications,
- Significant impact in modern technologies – they are utilized in hard drives, electromechanical systems, medical equipment as well as other advanced devices,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of NdFeB magnets:
- They may fracture when subjected to a heavy impact. If the magnets are exposed to external force, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time reinforces its overall resistance,
- High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to moisture can oxidize. Therefore, for outdoor applications, it's best to use waterproof types made of non-metallic composites,
- Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing fine shapes directly in the magnet,
- Possible threat due to small fragments may arise, in case of ingestion, which is crucial in the context of child safety. It should also be noted that minuscule fragments from these magnets may complicate medical imaging when ingested,
- High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which may limit large-scale applications
Maximum lifting force for a neodymium magnet – what affects it?
The given pulling force of the magnet corresponds to the maximum force, assessed under optimal conditions, that is:
- with the use of low-carbon steel plate serving as a magnetic yoke
- with a thickness of minimum 10 mm
- with a polished side
- in conditions of no clearance
- under perpendicular detachment force
- at room temperature
Determinants of practical lifting force of a magnet
The lifting capacity of a magnet is influenced by in practice the following factors, from primary to secondary:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed by applying a steel plate with a smooth surface of optimal thickness (min. 20 mm), under vertically applied force, in contrast under attempts to slide the magnet the holding force is lower. Additionally, even a small distance {between} the magnet’s surface and the plate decreases the holding force.
Safety Guidelines with Neodymium Magnets
Neodymium magnetic are delicate and can easily break and shatter.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Do not bring neodymium magnets close to GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are among the strongest magnets on Earth. The surprising force they generate between each other can surprise you.
To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
It is essential to keep neodymium magnets out of reach from children.
Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Neodymium Magnets can attract to each other, pinch the skin, and cause significant injuries.
Magnets may crack or alternatively crumble with uncontrolled joining to each other. Remember not to move them to each other or have them firmly in hands at a distance less than 10 cm.
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Safety precautions!
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.