SM 32x125 [2xM8] / N52 - magnetic separator
magnetic separator
Catalog no 130357
GTIN: 5906301813057
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
125 mm
Weight
690 g
455.10 ZŁ with VAT / pcs + price for transport
370.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Call us
+48 22 499 98 98
if you prefer drop us a message using
contact form
the contact section.
Weight as well as structure of a magnet can be verified using our
power calculator.
Orders placed before 14:00 will be shipped the same business day.
SM 32x125 [2xM8] / N52 - magnetic separator
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their notable holding force, neodymium magnets have these key benefits:
- They have unchanged lifting capacity, and over nearly ten years their attraction force decreases symbolically – ~1% (in testing),
- They remain magnetized despite exposure to strong external fields,
- By applying a bright layer of silver, the element gains a clean look,
- The outer field strength of the magnet shows elevated magnetic properties,
- Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
- Thanks to the flexibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in diverse shapes and sizes, which expands their functional possibilities,
- Significant impact in modern technologies – they are utilized in computer drives, electromechanical systems, diagnostic apparatus and technologically developed systems,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, in miniature format,
Disadvantages of NdFeB magnets:
- They can break when subjected to a sudden impact. If the magnets are exposed to external force, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time reinforces its overall robustness,
- Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- They rust in a humid environment, especially when used outside, we recommend using moisture-resistant magnets, such as those made of non-metallic materials,
- Limited ability to create threads in the magnet – the use of a mechanical support is recommended,
- Health risk linked to microscopic shards may arise, when consumed by mistake, which is important in the protection of children. Furthermore, small elements from these magnets have the potential to complicate medical imaging after being swallowed,
- Due to the price of neodymium, their cost is considerably higher,
Best holding force of the magnet in ideal parameters – what contributes to it?
The given lifting capacity of the magnet corresponds to the maximum lifting force, determined in a perfect environment, specifically:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- having a thickness of no less than 10 millimeters
- with a smooth surface
- with no separation
- in a perpendicular direction of force
- under standard ambient temperature
Magnet lifting force in use – key factors
In practice, the holding capacity of a magnet is affected by these factors, arranged from the most important to the least relevant:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was tested on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, in contrast under parallel forces the load capacity is reduced by as much as fivefold. Moreover, even a slight gap {between} the magnet and the plate decreases the load capacity.
Precautions with Neodymium Magnets
Do not give neodymium magnets to children.
Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are the most powerful, most remarkable magnets on earth, and the surprising force between them can shock you at first.
To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Neodymium magnets can demagnetize at high temperatures.
While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Keep neodymium magnets away from TV, wallet, and computer HDD.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Magnets will jump and clash together within a distance of several to almost 10 cm from each other.
Magnets made of neodymium are especially fragile, which leads to damage.
Neodymium magnets are extremely fragile, and by joining them in an uncontrolled manner, they will crumble. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Exercise caution!
To raise awareness of why neodymium magnets are so dangerous, read the article titled How very dangerous are very strong neodymium magnets?.