SM 32x125 [2xM8] / N52 - magnetic separator
magnetic separator
Catalog no 130357
GTIN: 5906301813057
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
125 mm
Weight
690 g
455.10 ZŁ with VAT / pcs + price for transport
370.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Can't decide what to choose?
Pick up the phone and ask
+48 888 99 98 98
otherwise drop us a message by means of
request form
the contact form page.
Parameters and shape of neodymium magnets can be tested on our
power calculator.
Same-day shipping for orders placed before 14:00.
SM 32x125 [2xM8] / N52 - magnetic separator
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Besides their high retention, neodymium magnets are valued for these benefits:
- They do not lose their even during nearly ten years – the reduction of strength is only ~1% (theoretically),
- They are very resistant to demagnetization caused by external magnetic sources,
- In other words, due to the glossy silver coating, the magnet obtains an aesthetic appearance,
- They have very high magnetic induction on the surface of the magnet,
- With the right combination of compounds, they reach increased thermal stability, enabling operation at or above 230°C (depending on the form),
- With the option for customized forming and targeted design, these magnets can be produced in multiple shapes and sizes, greatly improving engineering flexibility,
- Significant impact in modern technologies – they are utilized in hard drives, electric motors, diagnostic apparatus and technologically developed systems,
- Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in compact dimensions, which makes them ideal in small systems
Disadvantages of neodymium magnets:
- They can break when subjected to a heavy impact. If the magnets are exposed to external force, it is advisable to use in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time increases its overall strength,
- They lose power at high temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Magnets exposed to moisture can rust. Therefore, for outdoor applications, we suggest waterproof types made of rubber,
- The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is not feasible,
- Safety concern from tiny pieces may arise, especially if swallowed, which is crucial in the protection of children. Additionally, tiny components from these assemblies may interfere with diagnostics after being swallowed,
- Due to the price of neodymium, their cost is considerably higher,
Maximum lifting force for a neodymium magnet – what it depends on?
The given pulling force of the magnet means the maximum force, measured in a perfect environment, that is:
- with mild steel, serving as a magnetic flux conductor
- having a thickness of no less than 10 millimeters
- with a refined outer layer
- in conditions of no clearance
- in a perpendicular direction of force
- at room temperature
Impact of factors on magnetic holding capacity in practice
The lifting capacity of a magnet is influenced by in practice the following factors, from primary to secondary:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed by applying a smooth steel plate of optimal thickness (min. 20 mm), under vertically applied force, in contrast under parallel forces the holding force is lower. In addition, even a small distance {between} the magnet and the plate decreases the load capacity.
Safety Guidelines with Neodymium Magnets
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.
If joining of neodymium magnets is not under control, at that time they may crumble and crack. Remember not to move them to each other or have them firmly in hands at a distance less than 10 cm.
Neodymium magnetic are incredibly fragile, they easily crack as well as can crumble.
Magnets made of neodymium are extremely delicate, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Neodymium magnets can demagnetize at high temperatures.
In certain circumstances, Neodymium magnets may experience demagnetization when subjected to high temperatures.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Do not bring neodymium magnets close to GPS and smartphones.
Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can surprise you.
Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.
Magnets are not toys, children should not play with them.
Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Keep neodymium magnets away from TV, wallet, and computer HDD.
Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
Exercise caution!
In order for you to know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous very strong neodymium magnets.