e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our proposal. All "neodymium magnets" on our website are available for immediate delivery (see the list). See the magnet price list for more details check the magnet price list

Magnet for treasure hunters F300 GOLD

Where to buy powerful neodymium magnet? Magnet holders in airtight, solid steel enclosure are perfect for use in difficult, demanding climate conditions, including snow and rain more...

magnets with holders

Holders with magnets can be used to enhance production, underwater discoveries, or finding space rocks made of metal check...

We promise to ship your order if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x350 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130350

GTIN: 5906301812982

0

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

350 mm

Weight

0.01 g

984.00 with VAT / pcs + price for transport

800.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
800.00 ZŁ
984.00 ZŁ
price from 5 pcs
760.00 ZŁ
934.80 ZŁ
price from 10 pcs
720.00 ZŁ
885.60 ZŁ

Looking for a better price?

Call us now +48 888 99 98 98 alternatively drop us a message using form the contact form page.
Force as well as form of neodymium magnets can be tested with our power calculator.

Order by 14:00 and we’ll ship today!

SM 25x350 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 25x350 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130350
GTIN
5906301812982
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
350 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device roller magnetic is based on the use of neodymium magnets, placed in a casing made of stainless steel mostly AISI304. As a result, it is possible to precisely segregate ferromagnetic elements from the mixture. A fundamental component of its operation is the use of repulsion of N and S poles of neodymium magnets, which allows magnetic substances to be collected. The thickness of the magnet and its structure pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators are designed to segregate ferromagnetic particles. If the cans are made from ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers are used in food production to clear metallic contaminants, for example iron fragments or iron dust. Our rollers are constructed from acid-resistant steel, AISI 304, suitable for use in food.
Magnetic rollers, often called cylindrical magnets, find application in metal separation, food production as well as waste processing. They help in eliminating iron dust during the process of separating metals from other wastes.
Our magnetic rollers are composed of neodymium magnets anchored in a stainless steel tube casing of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar will be with M8 threaded holes - 18 mm, allowing for quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars differ in terms of magnetic force lines, flux density and the area of operation of the magnetic field. We produce them in two materials, N42 as well as N52.
Usually it is believed that the stronger the magnet, the better. Nevertheless, the strength of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and expected needs. The standard operating temperature of a magnetic bar is 80°C.
In the case where the magnet is thin, the magnetic force lines will be more compressed. Otherwise, in the case of a thicker magnet, the force lines are extended and reach further.
For creating the casings of magnetic separators - rollers, most often stainless steel is used, especially types AISI 316, AISI 316L, and AISI 304.
In a saltwater contact, AISI 316 steel is recommended due to its outstanding corrosion resistance.
Magnetic rollers are characterized by their specific arrangement of poles and their ability to attract magnetic particles directly onto their surface, in contrast to other separators that may utilize complex filtration systems.
Technical designations and terms related to magnetic separators comprise among others polarity, magnetic induction, magnet pitch, as well as the steel type applied.
Magnetic induction for a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value near the magnetic pole. The result is verified in a value table - the lowest is N30. All designations below N27 or N25 suggest recycling that falls below the standard - they are not suitable.
Neodymium magnetic bars offer a range of benefits such as excellent separation efficiency, strong magnetic field, and durability. Disadvantages may include the requirement for frequent cleaning, greater weight, and potential installation difficulties.
To properly maintain of neodymium magnetic rollers, it’s worth washing regularly, avoiding temperatures up to 80°C. The rollers feature waterproofing IP67, so if they are leaky, the magnets inside can rust and lose their power. Magnetic field measurements is recommended be carried out once every 24 months. Caution should be taken during use, as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, which are used to remove metal contaminants from bulk and granular materials. They are used in the food industry, recycling, and plastic processing, where the removal of iron metals and iron filings is essential.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their superior magnetic energy, neodymium magnets have these key benefits:

  • Their strength is durable, and after around ten years, it drops only by ~1% (according to research),
  • They protect against demagnetization induced by external magnetic fields remarkably well,
  • By applying a reflective layer of nickel, the element gains a sleek look,
  • They possess intense magnetic force measurable at the magnet’s surface,
  • Thanks to their exceptional temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
  • With the option for customized forming and personalized design, these magnets can be produced in numerous shapes and sizes, greatly improving application potential,
  • Key role in advanced technical fields – they are utilized in hard drives, electromechanical systems, medical equipment or even other advanced devices,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to external force, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time reinforces its overall strength,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of protective material for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing threads directly in the magnet,
  • Potential hazard linked to microscopic shards may arise, especially if swallowed, which is significant in the context of child safety. It should also be noted that minuscule fragments from these devices may disrupt scanning after being swallowed,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Detachment force of the magnet in optimal conditionswhat it depends on?

The given holding capacity of the magnet represents the highest holding force, calculated under optimal conditions, that is:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with no separation
  • in a perpendicular direction of force
  • at room temperature

Lifting capacity in practice – influencing factors

The lifting capacity of a magnet is determined by in practice key elements, according to their importance:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined with the use of a steel plate with a smooth surface of suitable thickness (min. 20 mm), under vertically applied force, whereas under attempts to slide the magnet the holding force is lower. Moreover, even a minimal clearance {between} the magnet’s surface and the plate reduces the load capacity.

Handle Neodymium Magnets Carefully

Keep neodymium magnets away from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets will attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a significant injury may occur. Depending on how massive the neodymium magnets are, they can lead to a cut or a fracture.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnetic are highly susceptible to damage, leading to breaking.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Do not bring neodymium magnets close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can shock you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.

 Keep neodymium magnets away from youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

People with pacemakers are advised to avoid neodymium magnets.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Be careful!

So you are aware of why neodymium magnets are so dangerous, read the article titled How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98