tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our store's offer. Practically all magnesy on our website are available for immediate delivery (see the list). Check out the magnet price list for more details check the magnet price list

Magnets for water searching F300 GOLD

Where to buy strong magnet? Magnet holders in solid and airtight steel enclosure are ideally suited for use in challenging climate conditions, including during rain and snow read...

magnetic holders

Holders with magnets can be used to improve production, exploring underwater areas, or locating meteorites made of metal more information...

Enjoy delivery of your order if the order is placed before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x350 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130350

GTIN: 5906301812982

0

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

350 mm

Weight

0.01 g

984.00 with VAT / pcs + price for transport

800.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
800.00 ZŁ
984.00 ZŁ
price from 5 pcs
760.00 ZŁ
934.80 ZŁ
price from 10 pcs
720.00 ZŁ
885.60 ZŁ

Not sure where to buy?

Call us +48 888 99 98 98 or contact us using our online form our website.
Force and shape of neodymium magnets can be checked on our modular calculator.

Orders placed before 14:00 will be shipped the same business day.

SM 25x350 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 25x350 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130350
GTIN
5906301812982
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
350 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the power of neodymium magnets, placed in a construction made of stainless steel usually AISI304. In this way, it is possible to efficiently separate ferromagnetic particles from different substances. An important element of its operation is the use of repulsion of magnetic poles N and S, which enables magnetic substances to be targeted. The thickness of the embedded magnet and its structure pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators are designed to extract ferromagnetic particles. If the cans are made of ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers are used in food production to clear metallic contaminants, such as iron fragments or iron dust. Our rollers are built from acid-resistant steel, AISI 304, suitable for contact with food.
Magnetic rollers, often called cylindrical magnets, are employed in food production, metal separation as well as recycling. They help in eliminating iron dust during the process of separating metals from other materials.
Our magnetic rollers are built with a neodymium magnet placed in a tube made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar will be with M8 threaded holes - 18 mm, enabling easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars stand out in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in materials, N42 as well as N52.
Usually it is believed that the stronger the magnet, the better. However, the effectiveness of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and expected needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is more flat, the magnetic force lines will be short. Otherwise, in the case of a thicker magnet, the force lines will be extended and extend over a greater distance.
For constructing the casings of magnetic separators - rollers, most often stainless steel is employed, particularly types AISI 316, AISI 316L, and AISI 304.
In a saltwater contact, AISI 316 steel is recommended due to its excellent corrosion resistance.
Magnetic bars are characterized by their unique configuration of poles and their capability to attract magnetic particles directly onto their surface, as opposed to other devices that often use more complicated filtration systems.
Technical designations and terms pertaining to magnetic separators comprise among others polarity, magnetic induction, magnet pitch, as well as the steel type applied.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The result is verified in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including excellent separation efficiency, strong magnetic field, and durability. On the other hand, among the drawbacks, one can mention the need for regular cleaning, higher cost, and potential installation challenges.
For proper maintenance of neodymium magnetic rollers, it’s worth regularly cleaning them from contaminants, avoiding extreme temperatures above 80 degrees, and protecting them from moisture if the threads are not sealed – in ours, they are. The rollers our rollers have waterproofing IP67, so if they are leaky, the magnets inside can oxidize and weaken. Testing of the rollers should be carried out every two years. Care should be taken, as there is a risk getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, which are used to remove metal contaminants from bulk and granular materials. They are applied in industries such as food processing, ceramics, and recycling, where metal separation is crucial.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their exceptional pulling force, neodymium magnets offer the following advantages:

  • They do not lose their even during around ten years – the loss of strength is only ~1% (according to tests),
  • They show superior resistance to demagnetization from outside magnetic sources,
  • Thanks to the polished finish and gold coating, they have an visually attractive appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • With the right combination of materials, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the structure),
  • With the option for tailored forming and precise design, these magnets can be produced in various shapes and sizes, greatly improving application potential,
  • Important function in new technology industries – they are used in computer drives, rotating machines, medical equipment and technologically developed systems,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in tiny dimensions, which makes them ideal in compact constructions

Disadvantages of NdFeB magnets:

  • They may fracture when subjected to a strong impact. If the magnets are exposed to physical collisions, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time reinforces its overall durability,
  • High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a humid environment, especially when used outside, we recommend using waterproof magnets, such as those made of rubber,
  • Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing fine shapes directly in the magnet,
  • Possible threat due to small fragments may arise, especially if swallowed, which is notable in the health of young users. It should also be noted that small elements from these assemblies might disrupt scanning if inside the body,
  • In cases of tight budgets, neodymium magnet cost may be a barrier,

Maximum magnetic pulling forcewhat affects it?

The given holding capacity of the magnet means the highest holding force, assessed under optimal conditions, namely:

  • with mild steel, used as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • with no separation
  • with vertical force applied
  • in normal thermal conditions

Lifting capacity in practice – influencing factors

In practice, the holding capacity of a magnet is affected by the following aspects, from crucial to less important:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was conducted on a smooth plate of suitable thickness, under perpendicular forces, in contrast under parallel forces the lifting capacity is smaller. Moreover, even a small distance {between} the magnet and the plate lowers the lifting capacity.

Handle Neodymium Magnets Carefully

Neodymium magnets are the most powerful, most remarkable magnets on earth, and the surprising force between them can surprise you at first.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Neodymium magnets will jump and touch together within a distance of several to almost 10 cm from each other.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

People with pacemakers are advised to avoid neodymium magnets.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnetic are extremely delicate, they easily break and can become damaged.

Magnets made of neodymium are extremely fragile, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets can demagnetize at high temperatures.

Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Be careful!

So that know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98