tel: +48 22 499 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our proposal. Practically all magnesy neodymowe on our website are in stock for immediate delivery (check the list). Check out the magnet pricing for more details check the magnet price list

Magnets for water searching F300 GOLD

Where to buy strong magnet? Magnet holders in airtight, solid steel casing are ideally suited for use in difficult weather, including in the rain and snow check...

magnetic holders

Holders with magnets can be applied to enhance production processes, exploring underwater areas, or locating meteorites made of ore more...

We promise to ship ordered magnets if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available Ships today (order by 14:00)

SM 25x350 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130350

GTIN: 5906301812982

0

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

350 mm

Weight

0.01 g

984.00 with VAT / pcs + price for transport

800.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
800.00 ZŁ
984.00 ZŁ
price from 5 pcs
760.00 ZŁ
934.80 ZŁ
price from 10 pcs
720.00 ZŁ
885.60 ZŁ

Need help making a decision?

Pick up the phone and ask +48 22 499 98 98 alternatively contact us via contact form the contact page.
Force as well as appearance of a magnet can be tested with our magnetic calculator.

Same-day shipping for orders placed before 14:00.

SM 25x350 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 25x350 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130350
GTIN
5906301812982
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
350 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

It is the heart of every magnetic filter used in industry. Its task is to separate metal filings from the transported material. High magnetic induction allows catching the finest iron particles.
The construction is based on a sealed stainless steel housing. The center is filled with NdFeB magnets arranged to maximize the field on the surface. Thanks to this, the rod is durable and hygienic.
Metal impurities are strongly attracted, making manual removal difficult. You can use compressed air or special non-magnetic strippers. For easier maintenance, consider a system with a cleaning sleeve.
The more Gauss, the smaller and weakly magnetic particles will be caught. The economical version handles large metal pieces well. High induction is required when contaminants are microscopic.
We can produce a rod with any mounting end. We offer various tip options: threaded holes (e.g., M8, M10), protruding screws, flat studs, or handles. Contact us for a quote on non-standard dimensions.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their stability, neodymium magnets are valued for these benefits:

  • They do not lose their strength nearly ten years – the decrease of power is only ~1% (according to tests),
  • They remain magnetized despite exposure to strong external fields,
  • Thanks to the glossy finish and silver coating, they have an elegant appearance,
  • They possess significant magnetic force measurable at the magnet’s surface,
  • Thanks to their high temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
  • Thanks to the freedom in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in diverse shapes and sizes, which broadens their functional possibilities,
  • Wide application in new technology industries – they are utilized in HDDs, electric drives, clinical machines or even technologically developed systems,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They may fracture when subjected to a sudden impact. If the magnets are exposed to physical collisions, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks while also enhances its overall resistance,
  • Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a moist environment, especially when used outside, we recommend using encapsulated magnets, such as those made of rubber,
  • The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is restricted,
  • Potential hazard related to magnet particles may arise, in case of ingestion, which is significant in the context of child safety. Moreover, small elements from these products can interfere with diagnostics if inside the body,
  • Due to expensive raw materials, their cost is above average,

Highest magnetic holding forcewhat affects it?

The given lifting capacity of the magnet represents the maximum lifting force, assessed in ideal conditions, that is:

  • with mild steel, used as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a polished side
  • with zero air gap
  • with vertical force applied
  • under standard ambient temperature

Lifting capacity in real conditions – factors

Practical lifting force is dependent on factors, by priority:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on a smooth plate of suitable thickness, under a perpendicular pulling force, however under attempts to slide the magnet the holding force is lower. Additionally, even a small distance {between} the magnet’s surface and the plate decreases the holding force.

Handle Neodymium Magnets with Caution

Neodymium magnets can demagnetize at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Keep neodymium magnets away from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets may crack or alternatively crumble with uncontrolled joining to each other. You can't move them to each other. At a distance less than 10 cm you should have them extremely strongly.

Neodymium magnets are noted for being fragile, which can cause them to crumble.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their power can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

  Do not give neodymium magnets to youngest children.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Exercise caution!

In order to illustrate why neodymium magnets are so dangerous, read the article - How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98