SM 25x350 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130350
GTIN: 5906301812982
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
350 mm
Weight
0.01 g
984.00 ZŁ with VAT / pcs + price for transport
800.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure about your choice?
Call us now
+48 888 99 98 98
alternatively get in touch using
form
the contact page.
Specifications and shape of neodymium magnets can be analyzed on our
magnetic calculator.
Same-day shipping for orders placed before 14:00.
SM 25x350 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their exceptional strength, neodymium magnets offer the following advantages:
- They have constant strength, and over around 10 years their performance decreases symbolically – ~1% (according to theory),
- They are highly resistant to demagnetization caused by external field interference,
- In other words, due to the shiny nickel coating, the magnet obtains an stylish appearance,
- Magnetic induction on the surface of these magnets is impressively powerful,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- With the option for tailored forming and targeted design, these magnets can be produced in various shapes and sizes, greatly improving design adaptation,
- Important function in cutting-edge sectors – they find application in hard drives, electromechanical systems, diagnostic apparatus along with other advanced devices,
- Thanks to their power density, small magnets offer high magnetic performance, with minimal size,
Disadvantages of NdFeB magnets:
- They may fracture when subjected to a strong impact. If the magnets are exposed to physical collisions, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage and additionally strengthens its overall resistance,
- They lose power at elevated temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Magnets exposed to wet conditions can degrade. Therefore, for outdoor applications, we recommend waterproof types made of rubber,
- Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing holes directly in the magnet,
- Potential hazard due to small fragments may arise, if ingested accidentally, which is important in the family environments. It should also be noted that tiny components from these magnets can complicate medical imaging when ingested,
- Due to expensive raw materials, their cost is above average,
Breakaway strength of the magnet in ideal conditions – what affects it?
The given pulling force of the magnet represents the maximum force, determined in ideal conditions, specifically:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- with a thickness of minimum 10 mm
- with a polished side
- with zero air gap
- in a perpendicular direction of force
- under standard ambient temperature
Impact of factors on magnetic holding capacity in practice
In practice, the holding capacity of a magnet is affected by the following aspects, from crucial to less important:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed by applying a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, whereas under attempts to slide the magnet the load capacity is reduced by as much as 5 times. Moreover, even a slight gap {between} the magnet and the plate reduces the load capacity.
Exercise Caution with Neodymium Magnets
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Magnets made of neodymium are noted for their fragility, which can cause them to crumble.
Neodymium magnetic are highly delicate, and by joining them in an uncontrolled manner, they will crumble. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can shock you.
To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets should not be around children.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
The magnet is coated with nickel - be careful if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
Neodymium magnets jump and clash mutually within a radius of several to almost 10 cm from each other.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Caution!
So you are aware of why neodymium magnets are so dangerous, see the article titled How dangerous are powerful neodymium magnets?.