SM 25x350 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130350
GTIN: 5906301812982
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
350 mm
Weight
0.01 g
984.00 ZŁ with VAT / pcs + price for transport
800.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Do you have doubts?
Call us
+48 22 499 98 98
or drop us a message through
inquiry form
through our site.
Force and appearance of magnets can be analyzed with our
magnetic calculator.
Orders placed before 14:00 will be shipped the same business day.
SM 25x350 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their strong magnetism, neodymium magnets have these key benefits:
- They retain their full power for around ten years – the loss is just ~1% (according to analyses),
- They remain magnetized despite exposure to magnetic noise,
- In other words, due to the shiny silver coating, the magnet obtains an professional appearance,
- They exhibit elevated levels of magnetic induction near the outer area of the magnet,
- Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
- Thanks to the flexibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which increases their usage potential,
- Important function in cutting-edge sectors – they serve a purpose in hard drives, rotating machines, medical equipment and technologically developed systems,
- Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in small dimensions, which makes them useful in miniature devices
Disadvantages of rare earth magnets:
- They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to mechanical hits, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage and additionally strengthens its overall strength,
- Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- They rust in a moist environment. For outdoor use, we recommend using moisture-resistant magnets, such as those made of rubber,
- The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is risky,
- Possible threat from tiny pieces may arise, especially if swallowed, which is crucial in the health of young users. Moreover, minuscule fragments from these devices might complicate medical imaging after being swallowed,
- In cases of tight budgets, neodymium magnet cost may be a barrier,
Highest magnetic holding force – what it depends on?
The given pulling force of the magnet corresponds to the maximum force, measured in ideal conditions, that is:
- with the use of low-carbon steel plate acting as a magnetic yoke
- of a thickness of at least 10 mm
- with a polished side
- with zero air gap
- with vertical force applied
- under standard ambient temperature
What influences lifting capacity in practice
In practice, the holding capacity of a magnet is affected by the following aspects, arranged from the most important to the least relevant:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was measured with the use of a polished steel plate of suitable thickness (min. 20 mm), under perpendicular detachment force, however under shearing force the lifting capacity is smaller. Additionally, even a small distance {between} the magnet and the plate lowers the load capacity.
Exercise Caution with Neodymium Magnets
Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.
Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Magnets made of neodymium are highly susceptible to damage, resulting in breaking.
Neodymium magnetic are highly delicate, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
In the case of holding a finger in the path of a neodymium magnet, in such a case, a cut or a fracture may occur.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can shock you at first.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Keep neodymium magnets away from GPS and smartphones.
Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Safety precautions!
Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
