LM TLN - 22 SQ / N38 - magnetic leviton
magnetic leviton
Catalog no 290494
GTIN: 5906301814528
Weight
1000 g
Looking for a better price?
Pick up the phone and ask
+48 22 499 98 98
otherwise get in touch through
inquiry form
the contact page.
Specifications along with appearance of magnets can be reviewed on our
power calculator.
Order by 14:00 and we’ll ship today!
LM TLN - 22 SQ / N38 - magnetic leviton
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Besides their high retention, neodymium magnets are valued for these benefits:
- They have constant strength, and over nearly 10 years their performance decreases symbolically – ~1% (according to theory),
- They are very resistant to demagnetization caused by external field interference,
- The use of a polished nickel surface provides a refined finish,
- The outer field strength of the magnet shows advanced magnetic properties,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- Thanks to the flexibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in diverse shapes and sizes, which expands their functional possibilities,
- Important function in new technology industries – they find application in data storage devices, rotating machines, medical equipment along with other advanced devices,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of magnetic elements:
- They can break when subjected to a sudden impact. If the magnets are exposed to shocks, we recommend in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks and additionally reinforces its overall robustness,
- Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- They rust in a damp environment, especially when used outside, we recommend using moisture-resistant magnets, such as those made of non-metallic materials,
- Limited ability to create precision features in the magnet – the use of a mechanical support is recommended,
- Possible threat related to magnet particles may arise, in case of ingestion, which is important in the health of young users. Moreover, minuscule fragments from these magnets might hinder health screening if inside the body,
- In cases of large-volume purchasing, neodymium magnet cost is a challenge,
Maximum magnetic pulling force – what contributes to it?
The given pulling force of the magnet means the maximum force, calculated under optimal conditions, namely:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- with a thickness of minimum 10 mm
- with a polished side
- with zero air gap
- with vertical force applied
- under standard ambient temperature
Practical aspects of lifting capacity – factors
In practice, the holding capacity of a magnet is affected by the following aspects, arranged from the most important to the least relevant:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was measured on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, whereas under parallel forces the holding force is lower. Moreover, even a minimal clearance {between} the magnet and the plate decreases the load capacity.
Exercise Caution with Neodymium Magnets
It is important to keep neodymium magnets away from children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Neodymium magnets can demagnetize at high temperatures.
Whilst Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Neodymium Magnets can attract to each other, pinch the skin, and cause significant swellings.
Magnets will jump and also contact together within a distance of several to almost 10 cm from each other.
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Keep neodymium magnets away from GPS and smartphones.
Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnetic are highly susceptible to damage, leading to breaking.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Be careful!
To illustrate why neodymium magnets are so dangerous, see the article - How very dangerous are powerful neodymium magnets?.