tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our offer. All "magnets" in our store are available for immediate purchase (see the list). Check out the magnet price list for more details see the magnet price list

Magnet for water searching F200 GOLD

Where to purchase strong neodymium magnet? Holders with magnets in airtight, solid enclosure are excellent for use in difficult, demanding weather, including snow and rain check...

magnetic holders

Holders with magnets can be applied to improve production, underwater exploration, or locating meteorites from gold see...

Enjoy shipping of your order on the day of purchase before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

KM HF - 11,3 kg - magnetic bracket

magnetic bracket

Catalog no 170256

GTIN: 5906301813682

5

Weight

304 g

Load capacity

11.3 kg / 110.82 N

24.60 with VAT / pcs + price for transport

20.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
20.00 ZŁ
24.60 ZŁ
price from 20 pcs
18.80 ZŁ
23.12 ZŁ
price from 40 pcs
17.60 ZŁ
21.65 ZŁ

Need help making a decision?

Call us +48 22 499 98 98 alternatively let us know via contact form the contact page.
Specifications and shape of magnets can be estimated on our online calculation tool.

Orders placed before 14:00 will be shipped the same business day.

KM HF - 11,3 kg - magnetic bracket

Specification/characteristics KM HF - 11,3 kg - magnetic bracket
properties
values
Cat. no.
170256
GTIN
5906301813682
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Weight
304 g [±0,1 mm]
Load capacity ~ ?
11.3 kg / 110.82 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material

properties
values
units

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Magnetic holders work great for welding with TIG methods, soldering, or handling heavy components. Their holding power ranges from 10–75 kg, depending on, such as StrongHand. Certain versions, e.g., with an integrated switch, allow for quick detachment of the magnet. Advantages of magnetic angles include heat resistance, solid grip, and required versatility.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their pulling strength, neodymium magnets provide the following advantages:

  • They virtually do not lose power, because even after 10 years, the performance loss is only ~1% (in laboratory conditions),
  • They show exceptional resistance to demagnetization from external field exposure,
  • Because of the brilliant layer of silver, the component looks high-end,
  • The outer field strength of the magnet shows elevated magnetic properties,
  • These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to form),
  • Thanks to the flexibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in various configurations, which broadens their usage potential,
  • Important function in new technology industries – they serve a purpose in computer drives, electric drives, clinical machines and other advanced devices,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They may fracture when subjected to a heavy impact. If the magnets are exposed to external force, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage and increases its overall durability,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of protective material for outdoor use,
  • Limited ability to create precision features in the magnet – the use of a external casing is recommended,
  • Potential hazard from tiny pieces may arise, if ingested accidentally, which is notable in the family environments. Furthermore, minuscule fragments from these magnets might complicate medical imaging after being swallowed,
  • In cases of mass production, neodymium magnet cost may not be economically viable,

Breakaway strength of the magnet in ideal conditionswhat contributes to it?

The given lifting capacity of the magnet means the maximum lifting force, calculated in the best circumstances, specifically:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • with no separation
  • with vertical force applied
  • in normal thermal conditions

Determinants of lifting force in real conditions

Practical lifting force is determined by factors, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined with the use of a smooth steel plate of suitable thickness (min. 20 mm), under vertically applied force, whereas under attempts to slide the magnet the lifting capacity is smaller. In addition, even a minimal clearance {between} the magnet and the plate lowers the load capacity.

Caution with Neodymium Magnets

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

  Do not give neodymium magnets to youngest children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

If have a finger between or alternatively on the path of attracting magnets, there may be a large cut or a fracture.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their power can surprise you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Neodymium magnetic are characterized by their fragility, which can cause them to shatter.

Neodymium magnets are characterized by considerable fragility. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Pay attention!

To raise awareness of why neodymium magnets are so dangerous, see the article titled How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98