e-mail: bok@dhit.pl

neodymium magnets

We provide blue color magnets Nd2Fe14B - our store's offer. Practically all "neodymium magnets" in our store are in stock for immediate delivery (check the list). See the magnet pricing for more details check the magnet price list

Magnets for treasure hunters F400 GOLD

Where to buy powerful neodymium magnet? Magnet holders in airtight and durable enclosure are perfect for use in difficult climate conditions, including in the rain and snow see...

magnetic holders

Magnetic holders can be applied to improve production, exploring underwater areas, or searching for meteors made of metal check...

We promise to ship ordered magnets on the day of purchase by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

KM HF - 11,3 kg - magnetic bracket

magnetic bracket

Catalog no 170256

GTIN: 5906301813682

5

Weight

304 g

Load capacity

11.3 kg / 110.82 N

24.60 with VAT / pcs + price for transport

20.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
20.00 ZŁ
24.60 ZŁ
price from 20 pcs
18.80 ZŁ
23.12 ZŁ
price from 40 pcs
17.60 ZŁ
21.65 ZŁ

Do you have a hard time selecting?

Pick up the phone and ask +48 22 499 98 98 alternatively get in touch by means of inquiry form the contact section.
Parameters along with structure of neodymium magnets can be verified with our our magnetic calculator.

Order by 14:00 and we’ll ship today!

KM HF - 11,3 kg - magnetic bracket

Specification/characteristics KM HF - 11,3 kg - magnetic bracket
properties
values
Cat. no.
170256
GTIN
5906301813682
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Weight
304 g [±0,1 mm]
Load capacity ~ ?
11.3 kg / 110.82 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material

properties
values
units

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

When purchasing a magnet holder, it's best to opt for a quality-tested product from a reputable manufacturer to ensure long-term durability and safety.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their long-term stability, neodymium magnets provide the following advantages:

  • They virtually do not lose strength, because even after ten years, the decline in efficiency is only ~1% (based on calculations),
  • Their ability to resist magnetic interference from external fields is among the best,
  • In other words, due to the metallic silver coating, the magnet obtains an stylish appearance,
  • They possess strong magnetic force measurable at the magnet’s surface,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • With the option for fine forming and targeted design, these magnets can be produced in various shapes and sizes, greatly improving application potential,
  • Wide application in new technology industries – they find application in hard drives, electric motors, medical equipment as well as high-tech tools,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, in miniature format,

Disadvantages of NdFeB magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to external force, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage while also reinforces its overall strength,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of rubber for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is not feasible,
  • Potential hazard linked to microscopic shards may arise, especially if swallowed, which is crucial in the family environments. Moreover, small elements from these devices may hinder health screening if inside the body,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Best holding force of the magnet in ideal parameterswhat it depends on?

The given holding capacity of the magnet means the highest holding force, assessed in the best circumstances, that is:

  • with mild steel, serving as a magnetic flux conductor
  • having a thickness of no less than 10 millimeters
  • with a refined outer layer
  • with zero air gap
  • under perpendicular detachment force
  • at room temperature

Key elements affecting lifting force

Practical lifting force is dependent on factors, by priority:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, whereas under parallel forces the lifting capacity is smaller. In addition, even a slight gap {between} the magnet’s surface and the plate reduces the load capacity.

Handle with Care: Neodymium Magnets

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are the most powerful magnets ever created, and their power can surprise you.

Familiarize yourself with our information to properly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Keep neodymium magnets away from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Magnets made of neodymium are extremely fragile, they easily crack as well as can crumble.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

  Neodymium magnets should not be in the vicinity children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets attract each other within a distance of several to around 10 cm from each other. Remember not to put fingers between magnets or in their path when attract. Depending on how massive the neodymium magnets are, they can lead to a cut or alternatively a fracture.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Safety rules!

In order to illustrate why neodymium magnets are so dangerous, see the article - How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98