SM 25x125 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130288
GTIN: 5906301812814
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
125 mm
Weight
0.01 g
319.80 ZŁ with VAT / pcs + price for transport
260.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Looking for a better price?
Pick up the phone and ask
+48 888 99 98 98
otherwise get in touch using
our online form
our website.
Force and structure of a magnet can be checked on our
magnetic calculator.
Orders submitted before 14:00 will be dispatched today!
SM 25x125 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Besides their high retention, neodymium magnets are valued for these benefits:
- Their strength is maintained, and after approximately 10 years, it drops only by ~1% (according to research),
- They protect against demagnetization induced by surrounding electromagnetic environments effectively,
- The use of a polished gold surface provides a refined finish,
- They possess significant magnetic force measurable at the magnet’s surface,
- Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
- Thanks to the freedom in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in various configurations, which expands their functional possibilities,
- Significant impact in advanced technical fields – they serve a purpose in computer drives, rotating machines, diagnostic apparatus or even other advanced devices,
- Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications
Disadvantages of magnetic elements:
- They can break when subjected to a powerful impact. If the magnets are exposed to shocks, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage while also enhances its overall durability,
- Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- They rust in a humid environment – during outdoor use, we recommend using waterproof magnets, such as those made of non-metallic materials,
- Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing holes directly in the magnet,
- Safety concern linked to microscopic shards may arise, if ingested accidentally, which is notable in the context of child safety. Additionally, tiny components from these assemblies may interfere with diagnostics after being swallowed,
- High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which can restrict large-scale applications
Maximum holding power of the magnet – what it depends on?
The given strength of the magnet represents the optimal strength, measured under optimal conditions, specifically:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- with a thickness of minimum 10 mm
- with a smooth surface
- in conditions of no clearance
- in a perpendicular direction of force
- at room temperature
What influences lifting capacity in practice
The lifting capacity of a magnet depends on in practice key elements, from primary to secondary:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was carried out on a smooth plate of optimal thickness, under perpendicular forces, however under shearing force the load capacity is reduced by as much as fivefold. Moreover, even a small distance {between} the magnet’s surface and the plate reduces the load capacity.
Handle Neodymium Magnets with Caution
It is important to maintain neodymium magnets away from children.
Remember that neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
If you have a finger between or alternatively on the path of attracting magnets, there may be a serious cut or a fracture.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are fragile as well as can easily break as well as get damaged.
Neodymium magnets are characterized by considerable fragility. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets are the most powerful magnets ever invented. Their strength can shock you.
To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Caution!
To show why neodymium magnets are so dangerous, see the article - How very dangerous are very powerful neodymium magnets?.