SM 25x125 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130288
GTIN: 5906301812814
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
125 mm
Weight
0.01 g
319.80 ZŁ with VAT / pcs + price for transport
260.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure about your choice?
Pick up the phone and ask
+48 22 499 98 98
or get in touch via
contact form
through our site.
Lifting power along with form of a neodymium magnet can be reviewed using our
power calculator.
Same-day shipping for orders placed before 14:00.
SM 25x125 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their notable magnetism, neodymium magnets have these key benefits:
- They virtually do not lose power, because even after ten years, the decline in efficiency is only ~1% (based on calculations),
- Their ability to resist magnetic interference from external fields is among the best,
- In other words, due to the shiny silver coating, the magnet obtains an aesthetic appearance,
- They possess intense magnetic force measurable at the magnet’s surface,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- With the option for customized forming and targeted design, these magnets can be produced in numerous shapes and sizes, greatly improving application potential,
- Key role in advanced technical fields – they are used in computer drives, electromechanical systems, medical equipment as well as sophisticated instruments,
- Thanks to their efficiency per volume, small magnets offer high magnetic performance, while occupying minimal space,
Disadvantages of NdFeB magnets:
- They are fragile when subjected to a powerful impact. If the magnets are exposed to external force, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time reinforces its overall resistance,
- Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of protective material for outdoor use,
- Limited ability to create internal holes in the magnet – the use of a magnetic holder is recommended,
- Safety concern from tiny pieces may arise, in case of ingestion, which is important in the health of young users. Moreover, miniature parts from these products can disrupt scanning when ingested,
- Due to the price of neodymium, their cost is relatively high,
Detachment force of the magnet in optimal conditions – what affects it?
The given pulling force of the magnet corresponds to the maximum force, assessed in a perfect environment, that is:
- with mild steel, used as a magnetic flux conductor
- having a thickness of no less than 10 millimeters
- with a polished side
- with no separation
- under perpendicular detachment force
- at room temperature
Practical aspects of lifting capacity – factors
The lifting capacity of a magnet depends on in practice key elements, according to their importance:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was tested on the plate surface of 20 mm thickness, when a perpendicular force was applied, whereas under attempts to slide the magnet the holding force is lower. In addition, even a small distance {between} the magnet’s surface and the plate decreases the lifting capacity.
Exercise Caution with Neodymium Magnets
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
If joining of neodymium magnets is not controlled, then they may crumble and also crack. Remember not to move them to each other or hold them firmly in hands at a distance less than 10 cm.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Do not give neodymium magnets to children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Neodymium magnets are known for being fragile, which can cause them to shatter.
Neodymium magnetic are fragile as well as will break if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their power can shock you.
Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Exercise caution!
So you are aware of why neodymium magnets are so dangerous, see the article titled How dangerous are strong neodymium magnets?.
