tel: +48 888 99 98 98

neodymium magnets

We provide blue color magnets Nd2Fe14B - our offer. Practically all magnesy neodymowe in our store are available for immediate purchase (check the list). See the magnet pricing for more details check the magnet price list

Magnet for water searching F200 GOLD

Where to purchase powerful neodymium magnet? Magnetic holders in airtight and durable steel enclosure are perfect for use in difficult weather, including in the rain and snow more...

magnetic holders

Magnetic holders can be applied to improve production, underwater exploration, or finding meteorites from gold see more...

Order always shipped if the order is placed before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x125 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130288

GTIN: 5906301812814

0

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

125 mm

Weight

0.01 g

319.80 with VAT / pcs + price for transport

260.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
260.00 ZŁ
319.80 ZŁ
price from 10 pcs
260.00 ZŁ
319.80 ZŁ
price from 17 pcs
260.00 ZŁ
319.80 ZŁ

Looking for a better price?

Pick up the phone and ask +48 888 99 98 98 otherwise get in touch using our online form our website.
Force and structure of a magnet can be checked on our magnetic calculator.

Orders submitted before 14:00 will be dispatched today!

SM 25x125 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 25x125 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130288
GTIN
5906301812814
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
125 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device roller magnetic is based on the use of neodymium magnets, which are placed in a construction made of stainless steel usually AISI304. Due to this, it is possible to efficiently remove ferromagnetic elements from different substances. A fundamental component of its operation is the repulsion of N and S poles of neodymium magnets, which enables magnetic substances to be targeted. The thickness of the embedded magnet and its structure's pitch determine the power and range of the separator's operation.
Generally speaking, magnetic separators are used to separate ferromagnetic particles. If the cans are made of ferromagnetic materials, the separator will effectively segregate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers are employed in food production to clear metallic contaminants, including iron fragments or iron dust. Our rods are made from durable acid-resistant steel, EN 1.4301, suitable for use in food.
Magnetic rollers, otherwise cylindrical magnets, are used in food production, metal separation as well as waste processing. They help in extracting iron dust in the course of the process of separating metals from other wastes.
Our magnetic rollers are composed of a neodymium magnet embedded in a stainless steel tube cylinder of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar will be with M8 threaded openings, which enables quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars differ in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in two materials, N42 as well as N52.
Generally it is believed that the greater the magnet's power, the more effective. But, the value of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and expected needs. The standard operating temperature of a magnetic bar is 80°C.
In the case where the magnet is thin, the magnetic force lines will be short. By contrast, when the magnet is thick, the force lines will be longer and extend over a greater distance.
For constructing the casings of magnetic separators - rollers, most often stainless steel is employed, especially types AISI 304, AISI 316, and AISI 316L.
In a saltwater environment, type AISI 316 steel is highly recommended thanks to its excellent anti-corrosion properties.
Magnetic bars are characterized by their specific arrangement of poles and their capability to attract magnetic particles directly onto their surface, as opposed to other devices that often use complex filtration systems.
Technical designations and terms related to magnetic separators include among others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The outcome is verified in a value table - the lowest is N30. All designations below N27 or N25 suggest recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic rollers offer many advantages, including higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. On the other hand, among the drawbacks, one can mention higher cost compared to other types of magnets and the need for regular maintenance.
By ensuring proper maintenance of neodymium magnetic rollers, you should regularly cleaning them from contaminants, avoiding high temperatures above 80 degrees, and shielding them from moisture if the threads are not sealed – in ours, they are. The rollers feature waterproofing IP67, so if they are not sealed, the magnets inside can rust and lose their power. Testing of the rollers should be carried out once every 24 months. Care should be taken, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where the removal of iron metals and iron filings is essential.

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their high retention, neodymium magnets are valued for these benefits:

  • Their strength is maintained, and after approximately 10 years, it drops only by ~1% (according to research),
  • They protect against demagnetization induced by surrounding electromagnetic environments effectively,
  • The use of a polished gold surface provides a refined finish,
  • They possess significant magnetic force measurable at the magnet’s surface,
  • Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • Thanks to the freedom in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in various configurations, which expands their functional possibilities,
  • Significant impact in advanced technical fields – they serve a purpose in computer drives, rotating machines, diagnostic apparatus or even other advanced devices,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They can break when subjected to a powerful impact. If the magnets are exposed to shocks, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage while also enhances its overall durability,
  • Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a humid environment – during outdoor use, we recommend using waterproof magnets, such as those made of non-metallic materials,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing holes directly in the magnet,
  • Safety concern linked to microscopic shards may arise, if ingested accidentally, which is notable in the context of child safety. Additionally, tiny components from these assemblies may interfere with diagnostics after being swallowed,
  • High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which can restrict large-scale applications

Maximum holding power of the magnet – what it depends on?

The given strength of the magnet represents the optimal strength, measured under optimal conditions, specifically:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • in a perpendicular direction of force
  • at room temperature

What influences lifting capacity in practice

The lifting capacity of a magnet depends on in practice key elements, from primary to secondary:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on a smooth plate of optimal thickness, under perpendicular forces, however under shearing force the load capacity is reduced by as much as fivefold. Moreover, even a small distance {between} the magnet’s surface and the plate reduces the load capacity.

Handle Neodymium Magnets with Caution

 It is important to maintain neodymium magnets away from children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

If you have a finger between or alternatively on the path of attracting magnets, there may be a serious cut or a fracture.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are fragile as well as can easily break as well as get damaged.

Neodymium magnets are characterized by considerable fragility. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are the most powerful magnets ever invented. Their strength can shock you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Caution!

To show why neodymium magnets are so dangerous, see the article - How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98