AM ucho małe [M8] - magnetic accessories
magnetic accessories
Catalog no 080345
GTIN: 5906301812487
Weight
27 g
Load capacity
240 kg / 2353.6 N
4.92 ZŁ with VAT / pcs + price for transport
4.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Looking for a better price?
Give us a call
+48 22 499 98 98
if you prefer drop us a message via
request form
the contact page.
Parameters and shape of magnetic components can be verified on our
power calculator.
Same-day shipping for orders placed before 14:00.
AM ucho małe [M8] - magnetic accessories
Magnetic properties of material
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their superior holding force, neodymium magnets have these key benefits:
- They retain their attractive force for around 10 years – the loss is just ~1% (based on simulations),
- They are very resistant to demagnetization caused by external magnetic sources,
- By applying a bright layer of nickel, the element gains a clean look,
- They possess intense magnetic force measurable at the magnet’s surface,
- Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
- With the option for customized forming and personalized design, these magnets can be produced in numerous shapes and sizes, greatly improving application potential,
- Significant impact in advanced technical fields – they serve a purpose in HDDs, electric drives, healthcare devices along with high-tech tools,
- Relatively small size with high magnetic force – neodymium magnets offer strong power in tiny dimensions, which makes them useful in compact constructions
Disadvantages of magnetic elements:
- They can break when subjected to a heavy impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage and additionally increases its overall resistance,
- They lose strength at high temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a wet environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber,
- The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is difficult,
- Health risk from tiny pieces may arise, if ingested accidentally, which is notable in the health of young users. Additionally, miniature parts from these assemblies can interfere with diagnostics after being swallowed,
- In cases of tight budgets, neodymium magnet cost may not be economically viable,
Best holding force of the magnet in ideal parameters – what contributes to it?
The given lifting capacity of the magnet corresponds to the maximum lifting force, assessed under optimal conditions, that is:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a refined outer layer
- in conditions of no clearance
- with vertical force applied
- at room temperature
Impact of factors on magnetic holding capacity in practice
The lifting capacity of a magnet is influenced by in practice the following factors, according to their importance:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was conducted on a smooth plate of suitable thickness, under a perpendicular pulling force, however under shearing force the holding force is lower. In addition, even a small distance {between} the magnet’s surface and the plate lowers the load capacity.
Handle Neodymium Magnets with Caution
Neodymium magnets can become demagnetized at high temperatures.
Whilst Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Maintain neodymium magnets far from youngest children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Keep neodymium magnets away from GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
Magnets attract each other within a distance of several to about 10 cm from each other. Remember not to place fingers between magnets or alternatively in their path when they attract. Magnets, depending on their size, can even cut off a finger or there can be a serious pressure or even a fracture.
Neodymium magnetic are fragile and can easily crack as well as shatter.
Neodymium magnets are highly fragile, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.
Neodymium magnets are among the strongest magnets on Earth. The surprising force they generate between each other can surprise you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
Neodymium magnets generate strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Exercise caution!
So you are aware of why neodymium magnets are so dangerous, read the article titled How dangerous are very powerful neodymium magnets?.
