tel: +48 888 99 98 98

neodymium magnets

We provide red color magnetic Nd2Fe14B - our offer. Practically all magnesy in our store are available for immediate purchase (check the list). Check out the magnet price list for more details check the magnet price list

Magnet for water searching F400 GOLD

Where to buy strong neodymium magnet? Holders with magnets in solid and airtight steel casing are excellent for use in difficult, demanding weather conditions, including during snow and rain check...

magnets with holders

Magnetic holders can be used to improve production, underwater discoveries, or locating space rocks from gold see...

Enjoy delivery of your order on the same day by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

NC NeoCube fi 5 mm kuleczki srebrne / N38 - neocube

neocube

Catalog no 120228

GTIN: 5906301812678

5

Weight

145 g

Magnetization Direction

↑ axial

Coating

[NiCuNi] nickel

49.99 with VAT / pcs + price for transport

40.64 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
40.64 ZŁ
49.99 ZŁ
price from 10 pcs
40.64 ZŁ
49.99 ZŁ
price from 37 pcs
40.64 ZŁ
49.99 ZŁ

Hunting for a discount?

Call us now +48 888 99 98 98 otherwise contact us via request form the contact form page.
Parameters as well as form of neodymium magnets can be analyzed on our power calculator.

Same-day shipping for orders placed before 14:00.

NC NeoCube fi 5 mm kuleczki srebrne / N38 - neocube

Specification/characteristics NC NeoCube fi 5 mm kuleczki srebrne / N38 - neocube
properties
values
Cat. no.
120228
GTIN
5906301812678
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Weight
145 g [±0,1 mm]
Magnetization Direction
↑ axial
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The beads are offered in various colors, such as silver, red, green, and some have a fluorescent layer, which shines in the dark.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic efficiency, neodymium magnets provide the following advantages:

  • Their strength is durable, and after approximately ten years, it drops only by ~1% (according to research),
  • Their ability to resist magnetic interference from external fields is among the best,
  • Because of the brilliant layer of nickel, the component looks high-end,
  • They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
  • Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • The ability for precise shaping as well as customization to custom needs – neodymium magnets can be manufactured in multiple variants of geometries, which enhances their versatility in applications,
  • Significant impact in cutting-edge sectors – they are used in data storage devices, electromechanical systems, clinical machines along with high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in compact dimensions, which allows for use in small systems

Disadvantages of NdFeB magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to physical collisions, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture and additionally reinforces its overall durability,
  • They lose strength at extreme temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to moisture can degrade. Therefore, for outdoor applications, it's best to use waterproof types made of coated materials,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is risky,
  • Possible threat due to small fragments may arise, especially if swallowed, which is significant in the family environments. Moreover, miniature parts from these devices can interfere with diagnostics if inside the body,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Detachment force of the magnet in optimal conditionswhat affects it?

The given pulling force of the magnet means the maximum force, determined in a perfect environment, namely:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • with zero air gap
  • with vertical force applied
  • in normal thermal conditions

Impact of factors on magnetic holding capacity in practice

Practical lifting force is determined by elements, by priority:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured with the use of a steel plate with a smooth surface of optimal thickness (min. 20 mm), under vertically applied force, in contrast under attempts to slide the magnet the load capacity is reduced by as much as 75%. In addition, even a slight gap {between} the magnet and the plate lowers the load capacity.

Be Cautious with Neodymium Magnets

  Do not give neodymium magnets to children.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets can demagnetize at high temperatures.

In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Keep neodymium magnets away from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets may crack or crumble with careless connecting to each other. Remember not to move them to each other or have them firmly in hands at a distance less than 10 cm.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can surprise you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are fragile and can easily crack and get damaged.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Be careful!

To show why neodymium magnets are so dangerous, read the article - How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98