tel: +48 888 99 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our proposal. Practically all magnesy on our website are available for immediate delivery (see the list). Check out the magnet pricing for more details check the magnet price list

Magnet for water searching F300 GOLD

Where to purchase powerful magnet? Holders with magnets in airtight and durable enclosure are perfect for use in challenging weather, including in the rain and snow see more...

magnets with holders

Magnetic holders can be applied to facilitate manufacturing, underwater exploration, or searching for space rocks made of ore read...

We promise to ship your order if the order is placed before 2:00 PM on business days.

Dhit sp. z o.o.
Product available Ships tomorrow

NC NeoCube fi 5 mm kuleczki srebrne / N38 - neocube

neocube

Catalog no 120228

GTIN: 5906301812678

5

Weight

145 g

Magnetization Direction

↑ axial

Coating

[NiCuNi] nickel

49.99 with VAT / pcs + price for transport

40.64 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
40.64 ZŁ
49.99 ZŁ
price from 10 pcs
38.61 ZŁ
47.49 ZŁ
price from 40 pcs
36.58 ZŁ
44.99 ZŁ

Want to negotiate?

Call us now +48 888 99 98 98 if you prefer contact us using request form the contact page.
Parameters as well as form of magnetic components can be tested using our modular calculator.

Orders submitted before 14:00 will be dispatched today!

NC NeoCube fi 5 mm kuleczki srebrne / N38 - neocube

Specification/characteristics NC NeoCube fi 5 mm kuleczki srebrne / N38 - neocube
properties
values
Cat. no.
120228
GTIN
5906301812678
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Weight
145 g [±0,1 mm]
Magnetization Direction
↑ axial
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

It is a magnetic puzzle allowing construction of solids, chains, and jewelry. Arranging balls is relaxing and improves concentration. A great desk gadget that occupies hands while thinking.
The product is dedicated to youth and adults, protect it from children. If swallowed, magnets can attract through intestinal walls, requiring surgical intervention. We recommend use by persons aware of the danger.
Color wearing off at contact points is a normal process resulting from friction. Black and gold versions are also very durable, but rainbow colors may wear off faster. Coating wear does not affect the magnetic strength of the balls.
You can buy more boxes to build bigger solids. It is important to combine balls of the same diameter (standard is 5 mm). More balls means more creative fun.
Start by stretching balls into one line, then fold them in layers. You can find many video tutorials online on how to make basic shapes. With time you will gain skill and arranging will become relaxing.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their high retention, neodymium magnets are valued for these benefits:

  • They retain their magnetic properties for almost 10 years – the loss is just ~1% (in theory),
  • They protect against demagnetization induced by surrounding electromagnetic environments remarkably well,
  • By applying a reflective layer of silver, the element gains a modern look,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to profile),
  • The ability for custom shaping as well as adaptation to custom needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which extends the scope of their use cases,
  • Wide application in new technology industries – they are utilized in computer drives, electromechanical systems, healthcare devices along with other advanced devices,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in tiny dimensions, which makes them useful in miniature devices

Disadvantages of rare earth magnets:

  • They are prone to breaking when subjected to a strong impact. If the magnets are exposed to external force, it is advisable to use in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time strengthens its overall durability,
  • High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to damp air can oxidize. Therefore, for outdoor applications, we suggest waterproof types made of rubber,
  • Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing holes directly in the magnet,
  • Potential hazard from tiny pieces may arise, if ingested accidentally, which is crucial in the health of young users. It should also be noted that tiny components from these assemblies can disrupt scanning after being swallowed,
  • Due to the price of neodymium, their cost is relatively high,

Maximum holding power of the magnet – what affects it?

The given pulling force of the magnet corresponds to the maximum force, measured under optimal conditions, that is:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a smooth surface
  • with zero air gap
  • in a perpendicular direction of force
  • in normal thermal conditions

Determinants of practical lifting force of a magnet

In practice, the holding capacity of a magnet is conditioned by the following aspects, from crucial to less important:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined by applying a polished steel plate of optimal thickness (min. 20 mm), under perpendicular pulling force, whereas under shearing force the load capacity is reduced by as much as 75%. Additionally, even a slight gap {between} the magnet’s surface and the plate decreases the holding force.

Be Cautious with Neodymium Magnets

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can become demagnetized at high temperatures.

Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Neodymium magnets are particularly fragile, resulting in shattering.

Neodymium magnetic are fragile as well as will crack if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their strength can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

In the situation of holding a finger in the path of a neodymium magnet, in that situation, a cut or even a fracture may occur.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

  Magnets are not toys, youngest should not play with them.

Neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Safety rules!

So that know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous very strong neodymium magnets.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98