NC NeoCube fi 5 mm kuleczki srebrne / N38 - neocube
neocube
Catalog no 120228
GTIN: 5906301812678
Weight
145 g
Magnetization Direction
↑ axial
Coating
[NiCuNi] nickel
49.99 ZŁ with VAT / pcs + price for transport
40.64 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Hunting for a discount?
Give us a call
+48 888 99 98 98
alternatively drop us a message via
inquiry form
the contact form page.
Specifications and structure of magnets can be calculated with our
magnetic mass calculator.
Orders submitted before 14:00 will be dispatched today!
NC NeoCube fi 5 mm kuleczki srebrne / N38 - neocube
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Besides their stability, neodymium magnets are valued for these benefits:
- They have stable power, and over around ten years their attraction force decreases symbolically – ~1% (in testing),
- They protect against demagnetization induced by ambient magnetic influence effectively,
- Thanks to the glossy finish and nickel coating, they have an visually attractive appearance,
- They possess significant magnetic force measurable at the magnet’s surface,
- Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
- Thanks to the flexibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in various configurations, which broadens their application range,
- Significant impact in modern technologies – they serve a purpose in hard drives, electric motors, diagnostic apparatus or even sophisticated instruments,
- Thanks to their power density, small magnets offer high magnetic performance, in miniature format,
Disadvantages of NdFeB magnets:
- They can break when subjected to a powerful impact. If the magnets are exposed to mechanical hits, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage while also enhances its overall resistance,
- Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to wet conditions can oxidize. Therefore, for outdoor applications, we recommend waterproof types made of coated materials,
- Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing holes directly in the magnet,
- Possible threat related to magnet particles may arise, in case of ingestion, which is notable in the context of child safety. Additionally, minuscule fragments from these devices might interfere with diagnostics once in the system,
- In cases of mass production, neodymium magnet cost is a challenge,
Breakaway strength of the magnet in ideal conditions – what contributes to it?
The given pulling force of the magnet means the maximum force, assessed in ideal conditions, namely:
- with the use of low-carbon steel plate acting as a magnetic yoke
- with a thickness of minimum 10 mm
- with a smooth surface
- with no separation
- in a perpendicular direction of force
- in normal thermal conditions
Magnet lifting force in use – key factors
Practical lifting force is determined by elements, listed from the most critical to the less significant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed using a smooth steel plate of optimal thickness (min. 20 mm), under vertically applied force, however under shearing force the holding force is lower. Additionally, even a minimal clearance {between} the magnet’s surface and the plate reduces the load capacity.
Exercise Caution with Neodymium Magnets
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Do not bring neodymium magnets close to GPS and smartphones.
Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets can demagnetize at high temperatures.
While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Neodymium magnets are highly susceptible to damage, leading to their cracking.
Neodymium magnetic are highly delicate, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Neodymium magnets generate strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Magnets will crack or alternatively crumble with uncontrolled joining to each other. You can't approach them to each other. At a distance less than 10 cm you should hold them very strongly.
Neodymium magnets are the most powerful, most remarkable magnets on earth, and the surprising force between them can shock you at first.
Familiarize yourself with our information to properly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.
Neodymium magnets should not be around youngest children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Be careful!
So you are aware of why neodymium magnets are so dangerous, see the article titled How dangerous are strong neodymium magnets?.
