SM 32x500 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130374
GTIN: 5906301813224
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
500 mm
Weight
2670 g
1488.30 ZŁ with VAT / pcs + price for transport
1210.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to talk magnets?
Call us now
+48 22 499 98 98
alternatively contact us by means of
our online form
the contact page.
Lifting power and appearance of neodymium magnets can be checked with our
power calculator.
Same-day processing for orders placed before 14:00.
SM 32x500 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Besides their durability, neodymium magnets are valued for these benefits:
- They have constant strength, and over nearly 10 years their performance decreases symbolically – ~1% (in testing),
- They remain magnetized despite exposure to magnetic surroundings,
- The use of a decorative silver surface provides a smooth finish,
- They have exceptional magnetic induction on the surface of the magnet,
- Thanks to their high temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
- With the option for tailored forming and precise design, these magnets can be produced in numerous shapes and sizes, greatly improving application potential,
- Significant impact in new technology industries – they are utilized in computer drives, electromechanical systems, healthcare devices along with high-tech tools,
- Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in compact dimensions, which makes them ideal in compact constructions
Disadvantages of rare earth magnets:
- They are fragile when subjected to a powerful impact. If the magnets are exposed to physical collisions, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time strengthens its overall durability,
- They lose power at increased temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of protective material for outdoor use,
- Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing holes directly in the magnet,
- Potential hazard linked to microscopic shards may arise, especially if swallowed, which is notable in the health of young users. Moreover, tiny components from these magnets can hinder health screening if inside the body,
- In cases of mass production, neodymium magnet cost may be a barrier,
Magnetic strength at its maximum – what it depends on?
The given pulling force of the magnet represents the maximum force, determined in the best circumstances, that is:
- with the use of low-carbon steel plate acting as a magnetic yoke
- with a thickness of minimum 10 mm
- with a smooth surface
- with no separation
- in a perpendicular direction of force
- under standard ambient temperature
Determinants of practical lifting force of a magnet
The lifting capacity of a magnet is influenced by in practice the following factors, according to their importance:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was carried out on a smooth plate of suitable thickness, under perpendicular forces, in contrast under attempts to slide the magnet the load capacity is reduced by as much as 5 times. Moreover, even a slight gap {between} the magnet’s surface and the plate decreases the load capacity.
Precautions
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Avoid bringing neodymium magnets close to a phone or GPS.
Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
If joining of neodymium magnets is not under control, then they may crumble and also crack. Remember not to approach them to each other or hold them firmly in hands at a distance less than 10 cm.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can shock you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Magnets made of neodymium are particularly delicate, which leads to damage.
Neodymium magnetic are extremely delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
It is essential to keep neodymium magnets away from children.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.
Warning!
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.