tel: +48 888 99 98 98

neodymium magnets

We offer red color magnetic Nd2Fe14B - our store's offer. Practically all magnesy neodymowe in our store are in stock for immediate delivery (see the list). See the magnet pricing for more details see the magnet price list

Magnet for treasure hunters F200 GOLD

Where to buy very strong neodymium magnet? Magnetic holders in airtight, solid steel enclosure are perfect for use in difficult weather, including during snow and rain more...

magnets with holders

Magnetic holders can be used to facilitate production, exploring underwater areas, or finding meteors made of metal more...

We promise to ship ordered magnets if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

NCM 10x13.5x5 / N38 - channel magnetic holder

channel magnetic holder

Catalog no 360485

GTIN: 5906301814849

5

Diameter Ø [±0,1 mm]

10 mm

Height [±0,1 mm]

13.5 mm

Weight

4.5 g

Magnetization Direction

↑ axial

Load capacity

4 kg / 39.23 N

Coating

[NiCuNi] nickel

3.39 with VAT / pcs + price for transport

2.76 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
2.76 ZŁ
3.39 ZŁ
price from 218 pcs
2.59 ZŁ
3.19 ZŁ
price from 544 pcs
2.43 ZŁ
2.99 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

NCM 10x13.5x5 / N38 - channel magnetic holder

Specification/characteristics NCM 10x13.5x5 / N38 - channel magnetic holder
properties
values
Cat. no.
360485
GTIN
5906301814849
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
10 mm [±0,1 mm]
Height
13.5 mm [±0,1 mm]
Weight
4.5 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
4 kg / 39.23 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

They work thanks to a powerful magnetic field generated by neodymium, which can be reinforced through the cover. Their functioning mechanism is based on neodymium magnets embedded in a steel shell, which concentrates the magnetism, allowing for stable adhesion of ferromagnetic components.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense strength, neodymium magnets have the following advantages:

  • They do not lose their strength (of the magnet). After approximately 10 years, their strength decreases by only ~1% (theoretically),
  • They are extremely resistant to demagnetization by external magnetic field,
  • In other words, thanks to the shiny nickel, gold, or silver finish, the element gains an visually attractive appearance,
  • They possess very high magnetic induction on the surface of the magnet,
  • Magnetic neodymium magnets are characterized by hugely high magnetic induction on the surface of the magnet and can operate (depending on the form) even at temperatures of 230°C or higher...
  • The ability for precise shaping or customization to specific needs – neodymium magnets can be produced in various forms and dimensions, which expands the range of their possible uses.
  • Key role in the industry of new technologies – find application in HDD drives, electric motors, medical devices or very modern machines.

Disadvantages of neodymium magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • They lose strength at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the shape and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
  • Health risk arising from small pieces of magnets can be dangerous, when accidentally ingested, which is crucial in the aspect of protecting young children. It's also worth noting that small elements of these magnets can be problematic in medical diagnosis in case of swallowing.

Handle with Care: Neodymium Magnets

Magnets made of neodymium are extremely fragile, leading to breaking.

Magnets made of neodymium are delicate as well as will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Keep neodymium magnets away from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

Avoid bringing neodymium magnets close to a phone or GPS.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Neodymium magnets bounce and also touch each other mutually within a radius of several to almost 10 cm from each other.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

  Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets can demagnetize at high temperatures.

Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Safety rules!

So you are aware of why neodymium magnets are so dangerous, read the article titled How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98