tel: +48 22 499 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our offer. All "magnets" in our store are in stock for immediate delivery (see the list). Check out the magnet pricing for more details check the magnet price list

Magnet for searching F300 GOLD

Where to buy strong magnet? Magnet holders in solid and airtight steel enclosure are excellent for use in difficult climate conditions, including during rain and snow see more...

magnets with holders

Magnetic holders can be applied to improve production processes, underwater discoveries, or searching for space rocks made of ore read...

We promise to ship your order on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

NCM 10x13.5x5 / N38 - channel magnetic holder

channel magnetic holder

Catalog no 360485

GTIN: 5906301814849

5

Diameter Ø [±0,1 mm]

10 mm

Height [±0,1 mm]

13.5 mm

Weight

4.5 g

Magnetization Direction

↑ axial

Load capacity

4 kg / 39.23 N

Coating

[NiCuNi] nickel

3.39 with VAT / pcs + price for transport

2.76 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
2.76 ZŁ
3.39 ZŁ
price from 250 pcs
2.59 ZŁ
3.19 ZŁ
price from 550 pcs
2.43 ZŁ
2.99 ZŁ

Not sure which magnet to buy?

Call us +48 888 99 98 98 if you prefer drop us a message through our online form the contact section.
Force as well as appearance of magnets can be analyzed using our online calculation tool.

Same-day processing for orders placed before 14:00.

NCM 10x13.5x5 / N38 - channel magnetic holder

Specification/characteristics NCM 10x13.5x5 / N38 - channel magnetic holder
properties
values
Cat. no.
360485
GTIN
5906301814849
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
10 mm [±0,1 mm]
Height
13.5 mm [±0,1 mm]
Weight
4.5 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
4 kg / 39.23 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

They function thanks to a strong magnetism zone generated by neodymium, which is reinforced by the cover. Their functioning mechanism relies on neodymium cores embedded in a metal shell, which focuses the magnetic force, allowing for secure attraction of ferromagnetic elements.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their tremendous pulling force, neodymium magnets offer the following advantages:

  • Their power is durable, and after around ten years, it drops only by ~1% (theoretically),
  • They are highly resistant to demagnetization caused by external magnetic sources,
  • Thanks to the shiny finish and nickel coating, they have an visually attractive appearance,
  • They possess intense magnetic force measurable at the magnet’s surface,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • The ability for precise shaping or adaptation to individual needs – neodymium magnets can be manufactured in many forms and dimensions, which extends the scope of their use cases,
  • Significant impact in new technology industries – they are used in computer drives, electric drives, clinical machines along with high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in compact dimensions, which makes them useful in compact constructions

Disadvantages of magnetic elements:

  • They can break when subjected to a heavy impact. If the magnets are exposed to physical collisions, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage while also increases its overall durability,
  • They lose strength at extreme temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to moisture can rust. Therefore, for outdoor applications, we suggest waterproof types made of non-metallic composites,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is risky,
  • Potential hazard related to magnet particles may arise, if ingested accidentally, which is crucial in the family environments. Additionally, tiny components from these assemblies may disrupt scanning when ingested,
  • In cases of large-volume purchasing, neodymium magnet cost is a challenge,

Best holding force of the magnet in ideal parameterswhat contributes to it?

The given strength of the magnet means the optimal strength, measured in the best circumstances, that is:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • under perpendicular detachment force
  • in normal thermal conditions

Magnet lifting force in use – key factors

In practice, the holding capacity of a magnet is conditioned by the following aspects, in descending order of importance:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed by applying a polished steel plate of optimal thickness (min. 20 mm), under perpendicular pulling force, in contrast under shearing force the lifting capacity is smaller. Moreover, even a slight gap {between} the magnet’s surface and the plate lowers the load capacity.

Handle Neodymium Magnets Carefully

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

 It is essential to keep neodymium magnets out of reach from children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets are highly susceptible to damage, leading to their cracking.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Keep neodymium magnets away from GPS and smartphones.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium Magnets can attract to each other, pinch the skin, and cause significant injuries.

If joining of neodymium magnets is not controlled, then they may crumble and also crack. You can't approach them to each other. At a distance less than 10 cm you should hold them extremely firmly.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Neodymium magnets produce strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can surprise you.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Safety rules!

To show why neodymium magnets are so dangerous, see the article - How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98