tel: +48 22 499 98 98

neodymium magnets

We provide blue color magnets Nd2Fe14B - our store's offer. All magnesy neodymowe on our website are in stock for immediate purchase (check the list). Check out the magnet pricing for more details check the magnet price list

Magnet for water searching F300 GOLD

Where to buy powerful magnet? Magnetic holders in solid and airtight steel enclosure are ideally suited for use in difficult, demanding weather, including during snow and rain read...

magnetic holders

Holders with magnets can be applied to enhance manufacturing, underwater exploration, or locating meteors made of metal see more...

Order is always shipped on the day of purchase before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 40x18x10 SH / N38 - lamellar magnet

lamellar magnet

Catalog no 020157

GTIN: 5906301811633

5

length [±0,1 mm]

40 mm

Width [±0,1 mm]

18 mm

Height [±0,1 mm]

10 mm

Weight

54 g

Magnetization Direction

↑ axial

Magnetic Induction

366.66 mT

Coating

[NiCuNi] nickel

33.83 with VAT / pcs + price for transport

27.50 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
27.50 ZŁ
33.83 ZŁ
price from 600 pcs
25.85 ZŁ
31.80 ZŁ
price from 2200 pcs
24.20 ZŁ
29.77 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MPL 40x18x10 SH / N38 - lamellar magnet

Specification/characteristics MPL 40x18x10 SH / N38 - lamellar magnet
properties
values
Cat. no.
020157
GTIN
5906301811633
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
40 mm [±0,1 mm]
Width
18 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
54 g [±0,1 mm]
Magnetization Direction
↑ axial
Magnetic Induction ~ ?
366.66 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium flat magnets i.e. MPL 40x18x10 SH / N38 are magnets created from neodymium in a rectangular form. They are known for their extremely powerful magnetic properties, which outshine traditional iron magnets.
Due to their strength, flat magnets are regularly used in products that need exceptional adhesion.
Typical temperature resistance of flat magnets is 80 °C, but depending on the dimensions, this value grows.
In addition, flat magnets often have different coatings applied to their surfaces, e.g. nickel, gold, or chrome, for enhancing their corrosion resistance.
The magnet with the designation MPL 40x18x10 SH / N38 and a lifting capacity of 0 kg weighing just 54 grams, making it the perfect choice for applications requiring a flat shape.
Neodymium flat magnets offer a range of advantages compared to other magnet shapes, which lead to them being the best choice for a multitude of projects:
Contact surface: Due to their flat shape, flat magnets guarantee a greater contact surface with other components, which can be beneficial in applications requiring a stronger magnetic connection.
Technology applications: They are often utilized in different devices, e.g. sensors, stepper motors, or speakers, where the thin and wide shape is crucial for their operation.
Mounting: The flat form's flat shape makes it easier mounting, particularly when it is required to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets permits creators a lot of flexibility in placing them in structures, which can be more difficult with magnets of other shapes.
Stability: In certain applications, the flat base of the flat magnet may provide better stability, minimizing the risk of shifting or rotating. It’s important to keep in mind that the optimal shape of the magnet depends on the specific project and requirements. In certain cases, other shapes, like cylindrical or spherical, may be a better choice.
Attracted by magnets are ferromagnetic materials, such as iron elements, objects containing nickel, cobalt and alloys of metals with magnetic properties. Moreover, magnets may weaker affect some other metals, such as steel. It’s worth noting that magnets are utilized in various devices and technologies.
The operation of magnets is based on the properties of the magnetic field, which arises from the ordered movement of electrons in their structure. The magnetic field of these objects creates attractive interactions, which affect objects made of nickel or other magnetic materials.

Magnets have two main poles: north (N) and south (S), which attract each other when they are oppositely oriented. Poles of the same kind, e.g. two north poles, act repelling on each other.
Thanks to this principle of operation, magnets are commonly used in electrical devices, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the greatest strength of attraction, making them indispensable for applications requiring strong magnetic fields. Moreover, the strength of a magnet depends on its size and the material it is made of.
Magnets do not attract plastic, glass, wooden materials and precious stones. Additionally, magnets do not affect most metals, such as copper, aluminum materials, items made of gold. Although these metals conduct electricity, do not exhibit ferromagnetic properties, meaning that they do not respond to a standard magnetic field, unless they are subjected to an extremely strong magnetic field.
It should be noted that high temperatures can weaken the magnet's effect. The Curie temperature is specific to each type of magnet, meaning that once this temperature is exceeded, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as compasses, magnetic stripe cards and even electronic devices sensitive to magnetic fields. Therefore, it is important to avoid placing magnets near such devices.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense power, neodymium magnets have the following advantages:

  • They do not lose strength over time - after about 10 years, their strength decreases by only ~1% (theoretically),
  • They are extremely resistant to demagnetization by external magnetic sources,
  • By applying a shiny coating of nickel, gold, or silver, the element gains an aesthetic appearance,
  • They possess very high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C and above...
  • Thanks to the flexibility in shaping and the ability to adapt to specific requirements – neodymium magnets can be produced in a wide range of shapes and sizes, which amplifies their universality in usage.
  • Wide application in modern technologies – are utilized in hard drives, electric motors, medical devices or very modern machines.

Disadvantages of neodymium magnets:

  • They can break as they are extremely fragile when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts and also increases its overall strength,
  • Magnets lose their strength due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent loss in strength (although it is worth noting that this is dependent on the shape and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Possible danger to health from tiny fragments of magnets pose a threat, in case of ingestion, which is particularly important in the aspect of protecting young children. Furthermore, tiny parts of these magnets are able to hinder the diagnostic process after entering the body.

Be Cautious with Neodymium Magnets

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

  Neodymium magnets should not be in the vicinity youngest children.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets can demagnetize at high temperatures.

In certain circumstances, Neodymium magnets may experience demagnetization when subjected to high temperatures.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

If joining of neodymium magnets is not under control, then they may crumble and also crack. You can't approach them to each other. At a distance less than 10 cm you should hold them extremely strongly.

Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can shock you at first.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Magnets made of neodymium are extremely fragile, leading to breaking.

Neodymium magnetic are highly fragile, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

In order to show why neodymium magnets are so dangerous, see the article - How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98