NCM 40x13.5x5 / N38 - channel magnetic holder
channel magnetic holder
Catalog no 360489
GTIN: 5906301814887
Diameter Ø [±0,1 mm]
40 mm
Height [±0,1 mm]
13.5 mm
Weight
18.4 g
Magnetization Direction
↑ axial
Load capacity
17 kg / 166.71 N
Coating
[NiCuNi] nickel
14.19 ZŁ with VAT / pcs + price for transport
11.54 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to talk magnets?
Call us
+48 22 499 98 98
alternatively drop us a message by means of
request form
through our site.
Specifications as well as appearance of magnets can be reviewed using our
force calculator.
Same-day processing for orders placed before 14:00.
NCM 40x13.5x5 / N38 - channel magnetic holder
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their magnetic capacity, neodymium magnets provide the following advantages:
- They retain their magnetic properties for almost 10 years – the drop is just ~1% (in theory),
- They remain magnetized despite exposure to magnetic surroundings,
- By applying a reflective layer of gold, the element gains a sleek look,
- They have extremely strong magnetic induction on the surface of the magnet,
- These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to form),
- Thanks to the freedom in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in various configurations, which broadens their usage potential,
- Wide application in advanced technical fields – they serve a purpose in data storage devices, electric motors, clinical machines as well as high-tech tools,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, in miniature format,
Disadvantages of rare earth magnets:
- They can break when subjected to a heavy impact. If the magnets are exposed to shocks, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks and additionally reinforces its overall durability,
- They lose magnetic force at extreme temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a moist environment, especially when used outside, we recommend using sealed magnets, such as those made of polymer,
- Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing threads directly in the magnet,
- Safety concern related to magnet particles may arise, when consumed by mistake, which is notable in the family environments. Moreover, minuscule fragments from these assemblies can interfere with diagnostics if inside the body,
- High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which may limit large-scale applications
Maximum magnetic pulling force – what contributes to it?
The given strength of the magnet represents the optimal strength, assessed in ideal conditions, specifically:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a polished side
- in conditions of no clearance
- with vertical force applied
- under standard ambient temperature
Impact of factors on magnetic holding capacity in practice
Practical lifting force is dependent on factors, by priority:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was measured on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, however under parallel forces the load capacity is reduced by as much as fivefold. Moreover, even a small distance {between} the magnet’s surface and the plate decreases the load capacity.
Safety Precautions
Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can surprise you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.
Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Keep neodymium magnets away from people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
If the joining of neodymium magnets is not controlled, at that time they may crumble and also crack. You can't approach them to each other. At a distance less than 10 cm you should hold them extremely firmly.
Keep neodymium magnets away from the wallet, computer, and TV.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Magnets made of neodymium are highly susceptible to damage, leading to breaking.
Neodymium magnetic are extremely delicate, and by joining them in an uncontrolled manner, they will break. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.
The magnet is coated with nickel - be careful if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Do not bring neodymium magnets close to GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Neodymium magnets can become demagnetized at high temperatures.
Even though magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Caution!
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
