NCM 40x13.5x5 / N38 - channel magnetic holder
channel magnetic holder
Catalog no 360489
GTIN: 5906301814887
Diameter Ø [±0,1 mm]
40 mm
Height [±0,1 mm]
13.5 mm
Weight
18.4 g
Magnetization Direction
↑ axial
Load capacity
17 kg / 166.71 N
Coating
[NiCuNi] nickel
14.19 ZŁ with VAT / pcs + price for transport
11.54 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Call us now
+48 22 499 98 98
if you prefer get in touch via
contact form
our website.
Parameters along with form of a neodymium magnet can be verified using our
modular calculator.
Same-day processing for orders placed before 14:00.
NCM 40x13.5x5 / N38 - channel magnetic holder
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their superior magnetic energy, neodymium magnets have these key benefits:
- They have stable power, and over more than ten years their attraction force decreases symbolically – ~1% (in testing),
- They show exceptional resistance to demagnetization from external field exposure,
- Because of the reflective layer of gold, the component looks high-end,
- The outer field strength of the magnet shows advanced magnetic properties,
- Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
- With the option for tailored forming and precise design, these magnets can be produced in numerous shapes and sizes, greatly improving design adaptation,
- Wide application in cutting-edge sectors – they are utilized in HDDs, electric motors, healthcare devices as well as sophisticated instruments,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of NdFeB magnets:
- They can break when subjected to a heavy impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks while also increases its overall durability,
- Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of synthetic coating for outdoor use,
- The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is difficult,
- Health risk linked to microscopic shards may arise, when consumed by mistake, which is notable in the family environments. Additionally, tiny components from these devices have the potential to disrupt scanning after being swallowed,
- Due to a complex production process, their cost is relatively high,
Maximum holding power of the magnet – what contributes to it?
The given lifting capacity of the magnet means the maximum lifting force, calculated in a perfect environment, that is:
- with the use of low-carbon steel plate serving as a magnetic yoke
- with a thickness of minimum 10 mm
- with a polished side
- in conditions of no clearance
- with vertical force applied
- in normal thermal conditions
Magnet lifting force in use – key factors
The lifting capacity of a magnet is determined by in practice the following factors, ordered from most important to least significant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was determined using a steel plate with a smooth surface of suitable thickness (min. 20 mm), under vertically applied force, however under attempts to slide the magnet the holding force is lower. In addition, even a slight gap {between} the magnet and the plate lowers the load capacity.
Handle Neodymium Magnets Carefully
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
If you have a finger between or alternatively on the path of attracting magnets, there may be a large cut or even a fracture.
Neodymium magnets can demagnetize at high temperatures.
Whilst Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Neodymium magnetic are highly susceptible to damage, resulting in breaking.
Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are the strongest magnets ever created, and their power can shock you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
Keep neodymium magnets away from TV, wallet, and computer HDD.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnets should not be around children.
Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Pay attention!
Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.