NCM 40x13.5x5 / N38 - channel magnetic holder
channel magnetic holder
Catalog no 360489
GTIN: 5906301814887
Diameter Ø [±0,1 mm]
40 mm
Height [±0,1 mm]
13.5 mm
Weight
18.4 g
Magnetization Direction
↑ axial
Load capacity
17 kg / 166.71 N
Coating
[NiCuNi] nickel
14.19 ZŁ with VAT / pcs + price for transport
11.54 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Call us now
+48 22 499 98 98
otherwise drop us a message through
form
the contact section.
Strength along with structure of magnets can be verified using our
magnetic calculator.
Orders placed before 14:00 will be shipped the same business day.
NCM 40x13.5x5 / N38 - channel magnetic holder
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their consistent power, neodymium magnets have these key benefits:
- They retain their magnetic properties for around ten years – the drop is just ~1% (based on simulations),
- They remain magnetized despite exposure to magnetic noise,
- The use of a decorative nickel surface provides a smooth finish,
- The outer field strength of the magnet shows advanced magnetic properties,
- Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
- Thanks to the flexibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in diverse shapes and sizes, which increases their application range,
- Important function in new technology industries – they are utilized in data storage devices, electric motors, healthcare devices and technologically developed systems,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, with minimal size,
Disadvantages of magnetic elements:
- They can break when subjected to a strong impact. If the magnets are exposed to shocks, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time enhances its overall robustness,
- Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to wet conditions can degrade. Therefore, for outdoor applications, we advise waterproof types made of coated materials,
- The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is not feasible,
- Potential hazard due to small fragments may arise, when consumed by mistake, which is important in the protection of children. Furthermore, miniature parts from these devices can interfere with diagnostics when ingested,
- In cases of mass production, neodymium magnet cost may not be economically viable,
Best holding force of the magnet in ideal parameters – what affects it?
The given holding capacity of the magnet represents the highest holding force, determined in the best circumstances, that is:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a polished side
- with no separation
- with vertical force applied
- under standard ambient temperature
Determinants of lifting force in real conditions
The lifting capacity of a magnet is influenced by in practice the following factors, according to their importance:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was tested on the plate surface of 20 mm thickness, when the force acted perpendicularly, whereas under parallel forces the load capacity is reduced by as much as fivefold. Additionally, even a small distance {between} the magnet’s surface and the plate reduces the lifting capacity.
Handle Neodymium Magnets Carefully
You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Neodymium magnets can demagnetize at high temperatures.
Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
It is essential to keep neodymium magnets out of reach from youngest children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Neodymium magnetic are particularly delicate, resulting in their breakage.
Neodymium magnets are characterized by significant fragility. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can surprise you.
To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Avoid bringing neodymium magnets close to a phone or GPS.
Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
Magnets will attract each other within a distance of several to around 10 cm from each other. Remember not to put fingers between magnets or in their path when they attract. Depending on how massive the neodymium magnets are, they can lead to a cut or a fracture.
Pay attention!
In order for you to know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous very powerful neodymium magnets.
