tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our store's offer. All magnesy on our website are available for immediate delivery (see the list). See the magnet price list for more details see the magnet price list

Magnet for treasure hunters F400 GOLD

Where to purchase strong neodymium magnet? Magnetic holders in airtight, solid enclosure are excellent for use in difficult, demanding weather, including snow and rain read...

magnets with holders

Holders with magnets can be used to improve production processes, underwater discoveries, or finding meteorites made of ore read...

We promise to ship ordered magnets if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

NCM 40x13.5x5 / N38 - channel magnetic holder

channel magnetic holder

Catalog no 360489

GTIN: 5906301814887

5

Diameter Ø [±0,1 mm]

40 mm

Height [±0,1 mm]

13.5 mm

Weight

18.4 g

Magnetization Direction

↑ axial

Load capacity

17 kg / 166.71 N

Coating

[NiCuNi] nickel

14.19 with VAT / pcs + price for transport

11.54 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
11.54 ZŁ
14.19 ZŁ
price from 60 pcs
10.85 ZŁ
13.34 ZŁ
price from 130 pcs
10.16 ZŁ
12.49 ZŁ

Need help making a decision?

Call us now +48 888 99 98 98 alternatively let us know through form the contact section.
Lifting power and form of magnetic components can be tested with our power calculator.

Orders placed before 14:00 will be shipped the same business day.

NCM 40x13.5x5 / N38 - channel magnetic holder

Specification/characteristics NCM 40x13.5x5 / N38 - channel magnetic holder
properties
values
Cat. no.
360489
GTIN
5906301814887
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
40 mm [±0,1 mm]
Height
13.5 mm [±0,1 mm]
Weight
18.4 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
17 kg / 166.71 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Grooved neodymium magnets installed in a sheet with holes designed for mounting represent a popular solution for factory applications, e.g. in the mounting of parts within workshops, warehouses, or on manufacturing systems.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their tremendous magnetic power, neodymium magnets offer the following advantages:

  • Their magnetic field remains stable, and after approximately ten years, it drops only by ~1% (theoretically),
  • Their ability to resist magnetic interference from external fields is notable,
  • Because of the brilliant layer of gold, the component looks visually appealing,
  • Magnetic induction on the surface of these magnets is notably high,
  • Thanks to their exceptional temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
  • Thanks to the freedom in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which increases their functional possibilities,
  • Important function in cutting-edge sectors – they find application in computer drives, rotating machines, medical equipment or even high-tech tools,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They are prone to breaking when subjected to a strong impact. If the magnets are exposed to shocks, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time reinforces its overall durability,
  • High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of rubber for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is restricted,
  • Potential hazard from tiny pieces may arise, when consumed by mistake, which is crucial in the health of young users. Furthermore, minuscule fragments from these devices can hinder health screening once in the system,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Magnetic strength at its maximum – what affects it?

The given lifting capacity of the magnet means the maximum lifting force, determined in ideal conditions, namely:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • with no separation
  • in a perpendicular direction of force
  • under standard ambient temperature

What influences lifting capacity in practice

The lifting capacity of a magnet depends on in practice key elements, ordered from most important to least significant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed using a polished steel plate of optimal thickness (min. 20 mm), under perpendicular detachment force, whereas under parallel forces the lifting capacity is smaller. Moreover, even a minimal clearance {between} the magnet and the plate decreases the load capacity.

Exercise Caution with Neodymium Magnets

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

 Maintain neodymium magnets far from children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

If the joining of neodymium magnets is not controlled, then they may crumble and also crack. Remember not to move them to each other or have them firmly in hands at a distance less than 10 cm.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Neodymium magnetic are noted for being fragile, which can cause them to become damaged.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Be careful!

To raise awareness of why neodymium magnets are so dangerous, see the article titled How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98