NCM 40x13.5x5 / N38 - channel magnetic holder
channel magnetic holder
Catalog no 360489
GTIN: 5906301814887
Diameter Ø [±0,1 mm]
40 mm
Height [±0,1 mm]
13.5 mm
Weight
18.4 g
Magnetization Direction
↑ axial
Load capacity
17 kg / 166.71 N
Coating
[NiCuNi] nickel
14.19 ZŁ with VAT / pcs + price for transport
11.54 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Do you have questions?
Pick up the phone and ask
+48 888 99 98 98
if you prefer get in touch by means of
form
the contact page.
Specifications and form of a magnet can be calculated using our
power calculator.
Same-day processing for orders placed before 14:00.
NCM 40x13.5x5 / N38 - channel magnetic holder
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their magnetic efficiency, neodymium magnets provide the following advantages:
- They do not lose their even during nearly 10 years – the loss of lifting capacity is only ~1% (according to tests),
- They are extremely resistant to demagnetization caused by external magnetic sources,
- Thanks to the polished finish and silver coating, they have an elegant appearance,
- Magnetic induction on the surface of these magnets is notably high,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- Thanks to the possibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which broadens their usage potential,
- Important function in cutting-edge sectors – they find application in data storage devices, electromechanical systems, diagnostic apparatus or even high-tech tools,
- Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in small dimensions, which makes them useful in compact constructions
Disadvantages of magnetic elements:
- They may fracture when subjected to a strong impact. If the magnets are exposed to external force, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time increases its overall resistance,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to moisture can degrade. Therefore, for outdoor applications, we recommend waterproof types made of non-metallic composites,
- Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing complex structures directly in the magnet,
- Safety concern due to small fragments may arise, if ingested accidentally, which is important in the family environments. Furthermore, tiny components from these products might complicate medical imaging when ingested,
- Due to a complex production process, their cost is relatively high,
Maximum lifting force for a neodymium magnet – what contributes to it?
The given strength of the magnet represents the optimal strength, determined under optimal conditions, that is:
- with the use of low-carbon steel plate serving as a magnetic yoke
- of a thickness of at least 10 mm
- with a polished side
- with zero air gap
- under perpendicular detachment force
- at room temperature
Determinants of lifting force in real conditions
The lifting capacity of a magnet depends on in practice the following factors, ordered from most important to least significant:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was carried out on a smooth plate of optimal thickness, under a perpendicular pulling force, in contrast under shearing force the lifting capacity is smaller. In addition, even a small distance {between} the magnet’s surface and the plate reduces the load capacity.
Exercise Caution with Neodymium Magnets
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can surprise you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnetic are characterized by being fragile, which can cause them to crumble.
Neodymium magnetic are fragile and will break if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
Keep neodymium magnets away from the wallet, computer, and TV.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
In the situation of placing a finger in the path of a neodymium magnet, in such a case, a cut or even a fracture may occur.
Avoid bringing neodymium magnets close to a phone or GPS.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets can become demagnetized at high temperatures.
In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.
Remember that neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.
Safety precautions!
To raise awareness of why neodymium magnets are so dangerous, see the article titled How very dangerous are very powerful neodymium magnets?.
