tel: +48 888 99 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our offer. Practically all "magnets" on our website are available for immediate purchase (see the list). See the magnet pricing for more details see the magnet price list

Magnets for treasure hunters F200 GOLD

Where to buy powerful neodymium magnet? Holders with magnets in solid and airtight enclosure are excellent for use in variable and difficult weather conditions, including snow and rain more information...

magnets with holders

Magnetic holders can be applied to enhance production, exploring underwater areas, or finding meteors made of ore read...

Order is always shipped on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o.
Product on order Ships in 3-5 days

UMP 29x10 [M5] GW - search holder

search holder

Catalog no 210230

GTIN: 5906301813903

0

Diameter Ø [±0,1 mm]

29 mm

Height [±0,1 mm]

10 mm

Weight

0.1 g

Load capacity

32 kg / 313.81 N

Coating

[NiCuNi] nickel

10.50 with VAT / pcs + price for transport

8.54 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
8.54 ZŁ
10.50 ZŁ
price from 150 pcs
8.03 ZŁ
9.87 ZŁ
price from 300 pcs
7.52 ZŁ
9.24 ZŁ

Not sure what to buy?

Pick up the phone and ask +48 22 499 98 98 otherwise get in touch via our online form the contact form page.
Specifications and form of magnetic components can be tested using our our magnetic calculator.

Order by 14:00 and we’ll ship today!

UMP 29x10 [M5] GW - search holder

Specification/characteristics UMP 29x10 [M5] GW - search holder
properties
values
Cat. no.
210230
GTIN
5906301813903
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
29 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
0.1 g [±0,1 mm]
Load capacity ~ ?
32 kg / 313.81 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material

properties
values
units

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their strong magnetic energy, neodymium magnets have these key benefits:

  • They have constant strength, and over around ten years their performance decreases symbolically – ~1% (according to theory),
  • Their ability to resist magnetic interference from external fields is impressive,
  • The use of a mirror-like nickel surface provides a refined finish,
  • They possess intense magnetic force measurable at the magnet’s surface,
  • These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to build),
  • With the option for fine forming and precise design, these magnets can be produced in multiple shapes and sizes, greatly improving application potential,
  • Wide application in advanced technical fields – they are used in computer drives, electric drives, diagnostic apparatus along with technologically developed systems,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, with minimal size,

Disadvantages of magnetic elements:

  • They can break when subjected to a heavy impact. If the magnets are exposed to external force, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time strengthens its overall resistance,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a moist environment – during outdoor use, we recommend using moisture-resistant magnets, such as those made of polymer,
  • Limited ability to create precision features in the magnet – the use of a housing is recommended,
  • Possible threat from tiny pieces may arise, if ingested accidentally, which is important in the context of child safety. Additionally, small elements from these devices can disrupt scanning after being swallowed,
  • In cases of mass production, neodymium magnet cost is a challenge,

Breakaway strength of the magnet in ideal conditionswhat contributes to it?

The given strength of the magnet corresponds to the optimal strength, assessed in ideal conditions, specifically:

  • with mild steel, used as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a polished side
  • with zero air gap
  • in a perpendicular direction of force
  • under standard ambient temperature

Determinants of lifting force in real conditions

Practical lifting force is dependent on factors, by priority:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on a smooth plate of suitable thickness, under perpendicular forces, whereas under parallel forces the lifting capacity is smaller. In addition, even a minimal clearance {between} the magnet and the plate reduces the holding force.

Caution with Neodymium Magnets

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

Neodymium magnets will jump and also clash together within a distance of several to almost 10 cm from each other.

Neodymium magnetic are highly delicate, they easily crack and can become damaged.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

  Magnets are not toys, youngest should not play with them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Avoid bringing neodymium magnets close to a phone or GPS.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Keep neodymium magnets away from the wallet, computer, and TV.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets should not be near people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnets can demagnetize at high temperatures.

Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Be careful!

In order for you to know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous very powerful neodymium magnets.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98