UMGB 135x40 [M10+M12] GW F600 +Lina GOBLIN / N38 - goblin magnetic holder
goblin magnetic holder
Catalog no 350437
GTIN: 5906301814795
Diameter Ø [±0,1 mm]
135 mm
Height [±0,1 mm]
40 mm
Weight
4300 g
Magnetization Direction
↑ axial
Load capacity
680 kg / 6668.52 N
Coating
[NiCuNi] nickel
735.24 ZŁ with VAT / pcs + price for transport
597.76 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to talk magnets?
Contact us by phone
+48 22 499 98 98
or let us know through
inquiry form
the contact section.
Specifications along with shape of a neodymium magnet can be reviewed with our
our magnetic calculator.
Orders placed before 14:00 will be shipped the same business day.
UMGB 135x40 [M10+M12] GW F600 +Lina GOBLIN / N38 - goblin magnetic holder
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their magnetic capacity, neodymium magnets provide the following advantages:
- They retain their full power for around ten years – the loss is just ~1% (according to analyses),
- They are very resistant to demagnetization caused by external magnetic sources,
- In other words, due to the shiny silver coating, the magnet obtains an stylish appearance,
- They exhibit superior levels of magnetic induction near the outer area of the magnet,
- With the right combination of compounds, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the structure),
- The ability for custom shaping or adjustment to individual needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
- Significant impact in cutting-edge sectors – they find application in hard drives, electric motors, medical equipment along with high-tech tools,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of neodymium magnets:
- They are prone to breaking when subjected to a strong impact. If the magnets are exposed to shocks, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage and strengthens its overall strength,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a moist environment – during outdoor use, we recommend using sealed magnets, such as those made of polymer,
- Limited ability to create threads in the magnet – the use of a mechanical support is recommended,
- Potential hazard due to small fragments may arise, if ingested accidentally, which is crucial in the family environments. Additionally, minuscule fragments from these products might hinder health screening after being swallowed,
- In cases of large-volume purchasing, neodymium magnet cost may not be economically viable,
Maximum lifting force for a neodymium magnet – what it depends on?
The given lifting capacity of the magnet corresponds to the maximum lifting force, calculated in ideal conditions, specifically:
- with mild steel, serving as a magnetic flux conductor
- of a thickness of at least 10 mm
- with a smooth surface
- with zero air gap
- under perpendicular detachment force
- in normal thermal conditions
Lifting capacity in real conditions – factors
Practical lifting force is determined by factors, listed from the most critical to the less significant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed with the use of a polished steel plate of suitable thickness (min. 20 mm), under vertically applied force, however under attempts to slide the magnet the lifting capacity is smaller. In addition, even a minimal clearance {between} the magnet and the plate reduces the load capacity.
Handle Neodymium Magnets with Caution
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Neodymium magnets are the strongest magnets ever created, and their power can shock you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Keep neodymium magnets away from GPS and smartphones.
Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Keep neodymium magnets away from TV, wallet, and computer HDD.
Neodymium magnets produce strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
If you have a finger between or on the path of attracting magnets, there may be a large cut or even a fracture.
Neodymium magnets are extremely fragile, they easily crack as well as can crumble.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
Neodymium magnets can become demagnetized at high temperatures.
While Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Pay attention!
In order to illustrate why neodymium magnets are so dangerous, read the article - How dangerous are powerful neodymium magnets?.