tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our store's offer. Practically all magnesy on our website are available for immediate purchase (check the list). See the magnet price list for more details see the magnet price list

Magnets for water searching F300 GOLD

Where to purchase very strong magnet? Holders with magnets in airtight and durable steel enclosure are ideally suited for use in difficult, demanding climate conditions, including in the rain and snow read...

magnets with holders

Magnetic holders can be used to improve manufacturing, exploring underwater areas, or finding space rocks from gold see more...

We promise to ship ordered magnets if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product on order

UMGB 135x40 [M10+M12] GW F600 +Lina GOBLIN / N38 - goblin magnetic holder

goblin magnetic holder

Catalog no 350437

GTIN: 5906301814795

5

Diameter Ø [±0,1 mm]

135 mm

Height [±0,1 mm]

40 mm

Weight

4300 g

Magnetization Direction

↑ axial

Load capacity

680 kg / 6668.52 N

Coating

[NiCuNi] nickel

735.24 with VAT / pcs + price for transport

597.76 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
597.76 ZŁ
735.24 ZŁ
price from 5 pcs
561.89 ZŁ
691.13 ZŁ
price from 35 pcs
526.03 ZŁ
647.02 ZŁ

Hunting for a discount?

Call us +48 888 99 98 98 if you prefer get in touch using form through our site.
Strength as well as structure of a neodymium magnet can be reviewed with our modular calculator.

Order by 14:00 and we’ll ship today!

UMGB 135x40 [M10+M12] GW F600 +Lina GOBLIN / N38 - goblin magnetic holder

Specification/characteristics UMGB 135x40 [M10+M12] GW F600 +Lina GOBLIN / N38 - goblin magnetic holder
properties
values
Cat. no.
350437
GTIN
5906301814795
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
135 mm [±0,1 mm]
Height
40 mm [±0,1 mm]
Weight
4300 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
680 kg / 6668.52 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their tremendous magnetic power, neodymium magnets offer the following advantages:

  • Their strength is maintained, and after approximately 10 years, it drops only by ~1% (according to research),
  • They are highly resistant to demagnetization caused by external magnetic fields,
  • By applying a shiny layer of nickel, the element gains a modern look,
  • They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
  • These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to profile),
  • Thanks to the freedom in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in diverse shapes and sizes, which broadens their usage potential,
  • Important function in cutting-edge sectors – they are used in computer drives, electric motors, diagnostic apparatus along with other advanced devices,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They can break when subjected to a heavy impact. If the magnets are exposed to shocks, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage while also enhances its overall strength,
  • They lose power at increased temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of rubber for outdoor use,
  • Limited ability to create precision features in the magnet – the use of a external casing is recommended,
  • Possible threat linked to microscopic shards may arise, when consumed by mistake, which is notable in the protection of children. It should also be noted that tiny components from these assemblies have the potential to interfere with diagnostics if inside the body,
  • Due to the price of neodymium, their cost is relatively high,

Best holding force of the magnet in ideal parameterswhat affects it?

The given strength of the magnet corresponds to the optimal strength, assessed in ideal conditions, namely:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • under perpendicular detachment force
  • under standard ambient temperature

Lifting capacity in real conditions – factors

In practice, the holding capacity of a magnet is conditioned by the following aspects, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, in contrast under attempts to slide the magnet the load capacity is reduced by as much as fivefold. Moreover, even a slight gap {between} the magnet and the plate decreases the load capacity.

Exercise Caution with Neodymium Magnets

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnetic are noted for being fragile, which can cause them to crumble.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Do not bring neodymium magnets close to GPS and smartphones.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

  Neodymium magnets should not be in the vicinity youngest children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets are among the strongest magnets on Earth. The surprising force they generate between each other can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets will bounce and also clash together within a distance of several to almost 10 cm from each other.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Be careful!

So that know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98