FM Ruszt magnetyczny do leja fi 200 jednopoziomowy / N52 - magnetic filter
magnetic filter
Catalog no 110457
GTIN: 5906301812654
Weight
2250 g
Coating
[NiCuNi] nickel
1968.00 ZŁ with VAT / pcs + price for transport
1600.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Do you have questions?
Pick up the phone and ask
+48 888 99 98 98
alternatively let us know using
contact form
the contact section.
Parameters as well as structure of a neodymium magnet can be tested with our
magnetic calculator.
Same-day processing for orders placed before 14:00.
FM Ruszt magnetyczny do leja fi 200 jednopoziomowy / N52 - magnetic filter
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their strong holding force, neodymium magnets have these key benefits:
- They virtually do not lose strength, because even after ten years, the performance loss is only ~1% (based on calculations),
- They protect against demagnetization induced by surrounding magnetic fields very well,
- By applying a reflective layer of silver, the element gains a sleek look,
- The outer field strength of the magnet shows elevated magnetic properties,
- Thanks to their exceptional temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
- Thanks to the possibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which increases their usage potential,
- Significant impact in new technology industries – they are utilized in data storage devices, electric drives, healthcare devices or even sophisticated instruments,
- Thanks to their power density, small magnets offer high magnetic performance, while occupying minimal space,
Disadvantages of rare earth magnets:
- They may fracture when subjected to a powerful impact. If the magnets are exposed to physical collisions, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage while also reinforces its overall robustness,
- Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to wet conditions can rust. Therefore, for outdoor applications, it's best to use waterproof types made of non-metallic composites,
- Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing complex structures directly in the magnet,
- Safety concern due to small fragments may arise, especially if swallowed, which is significant in the protection of children. It should also be noted that minuscule fragments from these devices might disrupt scanning once in the system,
- Due to expensive raw materials, their cost is above average,
Maximum magnetic pulling force – what contributes to it?
The given strength of the magnet represents the optimal strength, calculated in the best circumstances, namely:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a polished side
- in conditions of no clearance
- in a perpendicular direction of force
- in normal thermal conditions
Lifting capacity in practice – influencing factors
In practice, the holding capacity of a magnet is affected by these factors, from crucial to less important:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was measured by applying a smooth steel plate of suitable thickness (min. 20 mm), under vertically applied force, whereas under shearing force the load capacity is reduced by as much as 75%. Moreover, even a small distance {between} the magnet and the plate decreases the holding force.
Caution with Neodymium Magnets
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can demagnetize at high temperatures.
In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
Magnets may crack or alternatively crumble with careless connecting to each other. You can't approach them to each other. At a distance less than 10 cm you should hold them extremely firmly.
People with pacemakers are advised to avoid neodymium magnets.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Neodymium magnetic are incredibly fragile, they easily fall apart and can become damaged.
Neodymium magnetic are delicate as well as will crack if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
Never bring neodymium magnets close to a phone and GPS.
Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Keep neodymium magnets away from the wallet, computer, and TV.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Neodymium magnets are the most powerful magnets ever invented. Their power can surprise you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.
Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Warning!
In order to illustrate why neodymium magnets are so dangerous, read the article - How very dangerous are powerful neodymium magnets?.
