tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our store's offer. Practically all magnesy on our website are in stock for immediate purchase (check the list). Check out the magnet price list for more details check the magnet price list

Magnet for water searching F200 GOLD

Where to purchase strong magnet? Magnet holders in solid and airtight steel enclosure are excellent for use in difficult, demanding weather, including during rain and snow see...

magnetic holders

Magnetic holders can be used to improve manufacturing, underwater discoveries, or finding meteorites from gold check...

Shipping is shipped on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 18x175 [2xM5] / N42 - magnetic separator

magnetic separator

Catalog no 130272

GTIN: 5906301812746

0

Diameter Ø [±0,1 mm]

18 mm

Height [±0,1 mm]

175 mm

Weight

0.01 g

387.45 with VAT / pcs + price for transport

315.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
315.00 ZŁ
387.45 ZŁ
price from 8 pcs
299.25 ZŁ
368.08 ZŁ
price from 14 pcs
283.50 ZŁ
348.70 ZŁ

Not sure about your choice?

Give us a call +48 22 499 98 98 alternatively drop us a message via form through our site.
Weight along with appearance of neodymium magnets can be checked on our magnetic calculator.

Orders submitted before 14:00 will be dispatched today!

SM 18x175 [2xM5] / N42 - magnetic separator

Specification/characteristics SM 18x175 [2xM5] / N42 - magnetic separator
properties
values
Cat. no.
130272
GTIN
5906301812746
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
18 mm [±0,1 mm]
Height
175 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The main mechanism of the magnetic separator is the use of neodymium magnets, which are welded in a casing made of stainless steel mostly AISI304. Due to this, it is possible to precisely segregate ferromagnetic elements from the mixture. An important element of its operation is the use of repulsion of magnetic poles N and S, which causes magnetic substances to be collected. The thickness of the embedded magnet and its structure's pitch affect the power and range of the separator's operation.
Generally speaking, magnetic separators are designed to extract ferromagnetic elements. If the cans are made from ferromagnetic materials, the separator will effectively segregate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers find application in the food industry to remove metallic contaminants, for example iron fragments or iron dust. Our rods are made from durable acid-resistant steel, EN 1.4301, suitable for contact with food.
Magnetic rollers, otherwise cylindrical magnets, are used in metal separation, food production as well as recycling. They help in removing iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers are built with neodymium magnets anchored in a tube made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar will be with M8 threaded holes - 18 mm, allowing for quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars differ in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in materials, N42 and N52.
Usually it is believed that the stronger the magnet, the better. But, the strength of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and specific needs. The standard operating temperature of a magnetic bar is 80°C.
In the case where the magnet is thin, the magnetic force lines are more compressed. On the other hand, when the magnet is thick, the force lines are longer and extend over a greater distance.
For creating the casings of magnetic separators - rollers, most often stainless steel is utilized, particularly types AISI 316, AISI 316L, and AISI 304.
In a saltwater contact, AISI 316 steel is recommended due to its exceptional anti-corrosion properties.
Magnetic bars stand out for their specific arrangement of poles and their capability to attract magnetic substances directly onto their surface, in contrast to other devices that may utilize complex filtration systems.
Technical designations and terms related to magnetic separators include amongst others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. However, some of the downsides may involve higher cost compared to other types of magnets and the need for regular maintenance.
By ensuring proper maintenance of neodymium magnetic rollers, you should regularly cleaning them from deposits, avoiding high temperatures up to 80°C, and shielding them from moisture if the threads are not sealed – in ours, they are. The rollers feature waterproofing IP67, so if they are not sealed, the magnets inside can rust and weaken. Magnetic field measurements should be carried out every two years. Care should be taken, as there is a risk getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where the removal of iron metals and iron filings is essential.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their remarkable field intensity, neodymium magnets offer the following advantages:

  • Their magnetic field is maintained, and after approximately 10 years, it drops only by ~1% (theoretically),
  • They are very resistant to demagnetization caused by external field interference,
  • Thanks to the glossy finish and silver coating, they have an visually attractive appearance,
  • The outer field strength of the magnet shows advanced magnetic properties,
  • Thanks to their enhanced temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
  • With the option for tailored forming and targeted design, these magnets can be produced in various shapes and sizes, greatly improving engineering flexibility,
  • Significant impact in advanced technical fields – they are used in HDDs, electric drives, clinical machines as well as high-tech tools,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They may fracture when subjected to a heavy impact. If the magnets are exposed to mechanical hits, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage while also reinforces its overall strength,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of plastic for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is not feasible,
  • Health risk related to magnet particles may arise, especially if swallowed, which is significant in the context of child safety. It should also be noted that tiny components from these magnets have the potential to hinder health screening if inside the body,
  • High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which may limit large-scale applications

Handle with Care: Neodymium Magnets

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets can become demagnetized at high temperatures.

Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

 It is important to keep neodymium magnets away from youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnetic are especially fragile, resulting in damage.

Neodymium magnets are characterized by significant fragility. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Do not bring neodymium magnets close to GPS and smartphones.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can shock you at first.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

In the situation of holding a finger in the path of a neodymium magnet, in such a case, a cut or even a fracture may occur.

Safety precautions!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98