e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnets Nd2Fe14B - our store's offer. Practically all magnesy neodymowe in our store are in stock for immediate purchase (see the list). Check out the magnet pricing for more details see the magnet price list

Magnet for water searching F300 GOLD

Where to buy strong magnet? Magnet holders in solid and airtight enclosure are ideally suited for use in challenging weather, including in the rain and snow see...

magnetic holders

Holders with magnets can be applied to facilitate production processes, underwater discoveries, or locating meteorites made of ore read...

We promise to ship your order if the order is placed by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product on order

RM R1 - 10000 Gs / N52 - magnetic distributor

magnetic distributor

Catalog no 280251

GTIN: 5906301814429

5

Weight

0.01 g

Magnetization Direction

↑ axial

Coating

[NiCuNi] nickel

141.45 with VAT / pcs + price for transport

115.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
115.00 ZŁ
141.45 ZŁ
price from 10 pcs
108.10 ZŁ
132.96 ZŁ
price from 15 pcs
101.20 ZŁ
124.48 ZŁ

Want to negotiate?

Call us +48 22 499 98 98 if you prefer get in touch via our online form the contact form page.
Force and structure of magnetic components can be checked on our modular calculator.

Order by 14:00 and we’ll ship today!

RM R1 - 10000 Gs / N52 - magnetic distributor

Specification/characteristics RM R1 - 10000 Gs / N52 - magnetic distributor
properties
values
Cat. no.
280251
GTIN
5906301814429
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Weight
0.01 g [±0,1 mm]
Magnetization Direction
↑ axial
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Anti-theft tag detachers, such as those utilizing neodymium magnets, are a key component of store security systems. They work by using a strong magnetic field to unlock the tag's mechanism, enabling quick and safe removal of the security tag at the checkout. They quickly detach tags, minimizing delays in customer service, which is particularly useful in clothing stores, electronics shops, or those selling high-value alcohol. Advantages include ease of use, durability, and versatility, such as round, rectangular, or Sensormatic tags, like those in models RM®#6 from DHIT or Ultra 12000 Gs. Additionally, they provide strong protection against theft, reducing the possibility of goods being taken with an active security tag. It is crucial that detachers are stored in a location inaccessible to unauthorized individuals to enhance the security of the anti-theft system.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their exceptional pulling force, neodymium magnets offer the following advantages:

  • They have constant strength, and over more than ten years their performance decreases symbolically – ~1% (in testing),
  • They are highly resistant to demagnetization caused by external field interference,
  • Thanks to the polished finish and silver coating, they have an elegant appearance,
  • The outer field strength of the magnet shows elevated magnetic properties,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for customized forming and personalized design, these magnets can be produced in multiple shapes and sizes, greatly improving design adaptation,
  • Wide application in modern technologies – they are utilized in hard drives, rotating machines, medical equipment or even sophisticated instruments,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, with minimal size,

Disadvantages of magnetic elements:

  • They may fracture when subjected to a heavy impact. If the magnets are exposed to external force, we recommend in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage and additionally increases its overall durability,
  • They lose power at increased temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a damp environment. For outdoor use, we recommend using moisture-resistant magnets, such as those made of rubber,
  • Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing fine shapes directly in the magnet,
  • Potential hazard due to small fragments may arise, if ingested accidentally, which is notable in the protection of children. Furthermore, miniature parts from these products might interfere with diagnostics when ingested,
  • Due to a complex production process, their cost is above average,

Maximum holding power of the magnet – what contributes to it?

The given strength of the magnet corresponds to the optimal strength, assessed in the best circumstances, namely:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • with zero air gap
  • under perpendicular detachment force
  • under standard ambient temperature

Lifting capacity in practice – influencing factors

In practice, the holding capacity of a magnet is affected by the following aspects, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on the plate surface of 20 mm thickness, when a perpendicular force was applied, in contrast under shearing force the load capacity is reduced by as much as 5 times. Additionally, even a minimal clearance {between} the magnet’s surface and the plate reduces the load capacity.

Handle Neodymium Magnets with Caution

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets will crack or crumble with careless joining to each other. Remember not to move them to each other or hold them firmly in hands at a distance less than 10 cm.

  Magnets are not toys, youngest should not play with them.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Neodymium magnets produce intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Neodymium magnets are the strongest, most remarkable magnets on earth, and the surprising force between them can surprise you at first.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Do not bring neodymium magnets close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnetic are highly susceptible to damage, resulting in their cracking.

Neodymium magnetic are highly fragile, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Safety rules!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98