XT-6 magnetyzery do silników - BENZYNA + POWIETRZE - XT-6 magnetizer
XT-6 magnetizer
Catalog no 070243
GTIN: 5906301812432
Weight
152 g
94.99 ZŁ with VAT / pcs + price for transport
77.23 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Pick up the phone and ask
+48 888 99 98 98
if you prefer drop us a message by means of
request form
through our site.
Lifting power along with shape of magnets can be reviewed with our
magnetic calculator.
Order by 14:00 and we’ll ship today!
XT-6 magnetyzery do silników - BENZYNA + POWIETRZE - XT-6 magnetizer
Magnetic properties of material
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their pulling strength, neodymium magnets provide the following advantages:
- Their power is maintained, and after approximately 10 years, it drops only by ~1% (according to research),
- They show superior resistance to demagnetization from external magnetic fields,
- By applying a bright layer of silver, the element gains a sleek look,
- They possess significant magnetic force measurable at the magnet’s surface,
- Thanks to their enhanced temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
- With the option for customized forming and precise design, these magnets can be produced in various shapes and sizes, greatly improving design adaptation,
- Important function in modern technologies – they serve a purpose in HDDs, electric motors, healthcare devices as well as technologically developed systems,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, with minimal size,
Disadvantages of magnetic elements:
- They can break when subjected to a sudden impact. If the magnets are exposed to external force, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time reinforces its overall strength,
- High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to wet conditions can oxidize. Therefore, for outdoor applications, we suggest waterproof types made of non-metallic composites,
- The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is risky,
- Safety concern related to magnet particles may arise, in case of ingestion, which is crucial in the health of young users. It should also be noted that tiny components from these assemblies can disrupt scanning if inside the body,
- Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications
Best holding force of the magnet in ideal parameters – what contributes to it?
The given lifting capacity of the magnet represents the maximum lifting force, assessed under optimal conditions, that is:
- with mild steel, used as a magnetic flux conductor
- of a thickness of at least 10 mm
- with a polished side
- with zero air gap
- under perpendicular detachment force
- in normal thermal conditions
What influences lifting capacity in practice
Practical lifting force is determined by factors, by priority:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was conducted on plates with a smooth surface of suitable thickness, under a perpendicular pulling force, whereas under shearing force the load capacity is reduced by as much as fivefold. Additionally, even a small distance {between} the magnet’s surface and the plate reduces the lifting capacity.
Handle with Care: Neodymium Magnets
Neodymium magnets are the strongest magnets ever created, and their power can shock you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Magnets made of neodymium are especially fragile, which leads to their breakage.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Neodymium magnets bounce and also clash mutually within a radius of several to around 10 cm from each other.
You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.
Neodymium magnets produce intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnets should not be in the vicinity youngest children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Keep neodymium magnets away from people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Avoid bringing neodymium magnets close to a phone or GPS.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Safety rules!
So that know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.