XT-6 magnetyzery do silników - BENZYNA i LPG + olej - XT-6 magnetizer
XT-6 magnetizer
Catalog no 070242
GTIN: 5906301812425
Weight
209 g
98.99 ZŁ with VAT / pcs + price for transport
80.48 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Can't decide what to choose?
Call us now
+48 22 499 98 98
if you prefer drop us a message via
contact form
the contact form page.
Force along with form of magnets can be tested on our
modular calculator.
Order by 14:00 and we’ll ship today!
XT-6 magnetyzery do silników - BENZYNA i LPG + olej - XT-6 magnetizer
Magnetic properties of material
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Besides their high retention, neodymium magnets are valued for these benefits:
- They have unchanged lifting capacity, and over around 10 years their performance decreases symbolically – ~1% (according to theory),
- Their ability to resist magnetic interference from external fields is impressive,
- Thanks to the polished finish and nickel coating, they have an visually attractive appearance,
- The outer field strength of the magnet shows advanced magnetic properties,
- With the right combination of compounds, they reach increased thermal stability, enabling operation at or above 230°C (depending on the design),
- With the option for tailored forming and targeted design, these magnets can be produced in multiple shapes and sizes, greatly improving design adaptation,
- Important function in advanced technical fields – they find application in HDDs, electric motors, healthcare devices or even sophisticated instruments,
- Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in tiny dimensions, which makes them ideal in miniature devices
Disadvantages of rare earth magnets:
- They can break when subjected to a strong impact. If the magnets are exposed to physical collisions, we recommend in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks and additionally strengthens its overall resistance,
- High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Due to corrosion risk in humid conditions, it is common to use sealed magnets made of plastic for outdoor use,
- Limited ability to create threads in the magnet – the use of a external casing is recommended,
- Safety concern from tiny pieces may arise, when consumed by mistake, which is important in the health of young users. Furthermore, miniature parts from these assemblies have the potential to complicate medical imaging after being swallowed,
- In cases of mass production, neodymium magnet cost is a challenge,
Maximum lifting capacity of the magnet – what affects it?
The given lifting capacity of the magnet represents the maximum lifting force, calculated under optimal conditions, that is:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- having a thickness of no less than 10 millimeters
- with a refined outer layer
- with zero air gap
- in a perpendicular direction of force
- at room temperature
Determinants of lifting force in real conditions
In practice, the holding capacity of a magnet is conditioned by these factors, from crucial to less important:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, in contrast under attempts to slide the magnet the holding force is lower. Moreover, even a slight gap {between} the magnet and the plate lowers the holding force.
Exercise Caution with Neodymium Magnets
Neodymium magnets can demagnetize at high temperatures.
While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Neodymium magnets are the most powerful magnets ever invented. Their strength can surprise you.
To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Neodymium magnets are noted for being fragile, which can cause them to become damaged.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.
Keep neodymium magnets away from GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
It is essential to maintain neodymium magnets away from children.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
The magnet is coated with nickel - be careful if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
Magnets attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a major injury may occur. Depending on how large the neodymium magnets are, they can lead to a cut or a fracture.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Exercise caution!
To illustrate why neodymium magnets are so dangerous, read the article - How dangerous are powerful neodymium magnets?.